Protective Effects of Natrii Sulfas on Cerebral Focal Ischemia Induced by MCAO in Rats

2009 ◽  
Vol 37 (02) ◽  
pp. 273-293 ◽  
Author(s):  
Youngjoo Sohn ◽  
Ho Chang Kang ◽  
Kon Sik Kim ◽  
Sun-Min Park ◽  
Nak-Won Sohn ◽  
...  

This study examined the effect of Natrii sulfas, a treatment for stroke patients suffering constipation in Oriental medicine, on the physiological indices and brain edema of rats. Brain edema was induced by a middle cerebral artery occlusion (MCAO), Natrii sulfas was administered after the MCAO. At 3, 6, 15, 24, and 48 hours after reperfusion, the physiological indices such as the fecal weight, urine volume and water content in the stools were assessed. The edema index was measured 48 hours after reperfusion. At 48 hours, the expressions of iNOS, MMP9, VEGF, GFAP, Bax, Bcl-2, c-Fos, and HSP72 positive astrocytes were observed on the brain tissues by immunohistochemistry. Natrii sulfas significantly improved the decrease in fecal weight, urine volume and water content in the stool caused by the ischemic insult (p < 0.05) and attenuated the brain edema caused by the ischemia insult (p < 0.05). Natrii sulfas significantly down-regulated iNOS and MMP9 expressions and attenuated the astrocyte swelling due to brain edema in the penumbra of the cerebral cortex of MCAO rats. Natrii sulfas reduced the excess Bax and HSP72 expressions in ischemic brain, which was statistically significant in the penumbra of the cerebral cortex but not in the caudate putamen. These results suggest Natrii sulfas has a protective effect on ischemia-induced brain edema and improves the physiological symptoms.

2009 ◽  
Vol 30 (5) ◽  
pp. 943-949 ◽  
Author(s):  
Jae Hwan Kim ◽  
Yong Woo Lee ◽  
Kyung Ah Park ◽  
Won Taek Lee ◽  
Jong Eun Lee

Brain edema is frequently shown after cerebral ischemia. It is an expansion of brain volume because of increasing water content in brain. It causes to increase mortality after stroke. Agmatine, formed by the decarboxylation of L-arginine by arginine decarboxylase, has been shown to be neuroprotective in trauma and ischemia models. The purpose of this study was to investigate the effect of agmatine for brain edema in ischemic brain damage and to evaluate the expression of aquaporins (AQPs). Results showed that agmatine significantly reduced brain swelling volume 22 h after 2 h middle cerebral artery occlusion in mice. Water content in brain tissue was clearly decreased 24 h after ischemic injury by agmatine treatment. Blood–brain barrier (BBB) disruption was diminished with agmatine than without. The expressions of AQPs-1 and -9 were well correlated with brain edema as water channels, were significantly decreased by agmatine treatment. It can thus be suggested that agmatine could attenuate brain edema by limitting BBB disruption and blocking the accumulation of brain water content through lessening the expression of AQP-1 after cerebral ischemia.


1989 ◽  
Vol 9 (5) ◽  
pp. 709-712 ◽  
Author(s):  
D. Dewar ◽  
M. C. Wallace ◽  
A. Kurumaji ◽  
J. McCulloch

The functional integrity of the N-methyl-d-aspartate receptor complex following focal cerebral ischemia in the rat has been examined at a time when brain tissue is irreversibly damaged. Twelve hours after unilateral permanent middle cerebral artery occlusion, [3H]-MK-801 binding was not significantly altered in the ischemic cerebral cortex compared to sham-operated animals. Moreover, the enhancement of [3H]MK-801 binding by exogenous glutamate was preserved in an area of the brain that was permanently damaged by the ischemic insult.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Zhou-Quan Wu ◽  
Su-yang Cui ◽  
Liang Zhu ◽  
Zhi-qing Zou

This study is aimed at investigating the association between the electroacupuncture (EA) pretreatment-induced protective effect against early cerebral ischemic injury and autophagy. EA pretreatment can protect cerebral ischemic and reperfusion injuries, but whether the attenuation of early cerebral ischemic injury by EA pretreatment was associated with autophagy is not yet clear. This study used the middle cerebral artery occlusion model to monitor the process of ischemic injury. For rats in the EA pretreatment group, EA pretreatment was conducted at Baihui acupoint before ischemia for 30 min for 5 consecutive days. The results suggested that EA pretreatment significantly increased the expression of autophagy in the cerebral cortical area on the ischemic side of rats. But the EA pretreatment-induced protective effects on the brain could be reversed by the specific inhibitor 3-methyladenine of autophagy. Additionally, the Pearson correlation analysis indicated that the impact of EA pretreatment on p-mTOR (2481) was negatively correlated with its impact on autophagy. In conclusion, the mechanism of EA pretreatment at Baihui acupoint against cerebral ischemic injury is mainly associated with the upregulation of autophagy expression, and its regulation of autophagy may depend on mTOR-mediated signaling pathways.


2020 ◽  
Vol 12 (1) ◽  
pp. 001-008
Author(s):  
Ting Liu ◽  
Xing-Zhi Liao ◽  
Mai-Tao Zhou

Abstract Background Brain edema is one of the major causes of fatality and disability associated with injury and neurosurgical procedures. The goal of this study was to evaluate the effect of ulinastatin (UTI), a protease inhibitor, on astrocytes in a rat model of traumatic brain injury (TBI). Methodology A rat model of TBI was established. Animals were randomly divided into 2 groups – one group was treated with normal saline and the second group was treated with UTI (50,000 U/kg). The brain water content and permeability of the blood–brain barrier were assessed in the two groups along with a sham group (no TBI). Expression of the glial fibrillary acidic protein, endthelin-1 (ET-1), vascular endothelial growth factor (VEGF), and matrix metalloproteinase 9 (MMP-9) were measured by immunohistochemistry and western blot. Effect of UTI on ERK and PI3K/AKT signaling pathways was measured by western blot. Results UTI significantly decreased the brain water content and extravasation of the Evans blue dye. This attenuation was associated with decreased activation of the astrocytes and ET-1. UTI treatment decreased ERK and Akt activation and inhibited the expression of pro-inflammatory VEGF and MMP-9. Conclusion UTI can alleviate brain edema resulting from TBI by inhibiting astrocyte activation and ET-1 production.


2021 ◽  
pp. 0271678X2199439
Author(s):  
Cen Yang ◽  
Jingjing Liu ◽  
Jingyi Wang ◽  
Anqi Yin ◽  
Zhenhua Jiang ◽  
...  

There are no effective treatments for stroke. The activation of endogenous protective mechanisms is a promising therapeutic approach, which evokes the intrinsic ability of the brain to protect itself. Accumulated evidence strongly suggests that electroacupuncture (EA) pretreatment induces rapid tolerance to cerebral ischemia. With regard to mechanisms underlying ischemic tolerance induced by EA, many molecules and signaling pathways are involved, such as the endocannabinoid system, although the exact mechanisms have not been fully elucidated. In the current study, we employed mutant mice, neuropharmacology, microdialysis, and virus transfection techniques in a middle cerebral artery occlusion (MCAO) model to explore the cell-specific and brain region-specific mechanisms of EA-induced neuroprotection. EA pretreatment resulted in increased ambient endocannabinoid (eCB) levels and subsequent activation of ischemic penumbral astroglial cannabinoid type 1 receptors (CB1R) which led to moderate upregulation of extracellular glutamate that protected neurons from cerebral ischemic injury. These findings provide a novel cellular mechanism of EA and a potential therapeutic target for ischemic stroke.


2007 ◽  
Vol 412 (2) ◽  
pp. 114-117 ◽  
Author(s):  
John C. Ashton ◽  
Rosanna M.A. Rahman ◽  
Shiva M. Nair ◽  
Brad A. Sutherland ◽  
Michelle Glass ◽  
...  

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Alexander Akhmedov ◽  
Remo D Spescha ◽  
Francesco Paneni ◽  
Giovani G Camici ◽  
Thomas F Luescher

Background— Stroke is one of the most common causes of death and long term disability worldwide primarily affecting the elderly population. Lectin-like oxidized LDL receptor 1 (LOX-1) is the receptor for oxidized LDL identified in endothelial cells. Binding of OxLDL to LOX-1 induces several cellular events in endothelial cells, such as activation of transcription factor NF-kB, upregulation of MCP-1, and reduction in intracellular NO. Accumulating evidence suggests that LOX-1 is involved in endothelial dysfunction, inflammation, atherogenesis, myocardial infarction, and intimal thickening after balloon catheter injury. Interestingly, a recent study demonstrated that acetylsalicylic acid (aspirin), which could prevent ischemic stroke, inhibited Ox-LDL-mediated LOX-1 expression in human coronary endothelial cells. The expression of LOX-1 was increased at a transient ischemic core site in the rat middle cerebral artery occlusion model. These data suggest that LOX-1 expression induces atherosclerosis in the brain and is the precipitating cause of ischemic stroke. Therefore, the goal of the present study was to investigate the role of endothelial LOX-1 in stroke using experimental mouse model. Methods and Results— 12-week-old male LOX-1TG generated recently in our group and wild-type (WT) mice were applied for a transient middle cerebral artery occlusion (MCAO) model to induce ischemia/reperfusion (I/R) brain injury. LOX-1TG mice developed 24h post-MCAO significantly larger infarcts in the brain compared to WT (81.51±8.84 vs. 46.41±10.13, n=7, p < 0.05) as assessed morphologically using Triphenyltetrazolium chloride (TTC) staining. Moreover, LOX-1TG showed higher neurological deficit in RotaRod (35.57±8.92 vs. 66.14±10.63, n=7, p < 0.05) and Bederson tests (2.22±0.14 vs. 1.25±0.30, n=9-12, p < 0.05) - two experimental physiological tests for neurological function. Conclusions— Thus, our data suggest that LOX-1 plays a critical role in the ischemic stroke when expressed at unphysiological levels. Such LOX-1 -associated phenotype could be due to the endothelial dysfunction. Therefore, LOX-1 may represent novel therapeutic targets for preventing ischemic stroke.


Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Hilary A Seifert ◽  
Lisa A Collier ◽  
Stanley A Benkovic ◽  
Alison E Willing ◽  
Keith R Pennypacker

Objective: The splenic response to injury furthers cellular degeneration as its removal is protective in ischemic injuries to several organ systems including the brain. Previously, we have shown that the proinflammatory cytokine interferon gamma (IFNg), which activates microglia/macrophages, is elevated in the spleen and the brain following permanent middle cerebral artery occlusion (MCAO). IFNg induces the production of interferon-inducible protein 10 (IP-10) which further propagates the inflammatory response. Therefore, we investigated the expression of IP-10 in the brain and spleen following ischemic stroke. Hypothesis: IFNg production in the brain and the spleen results in elevated levels of IP-10 in the same tissues post-MCAO. Methods: A time course was conducted to investigate splenic and brain protein levels of IP-10 in rats over time following MCAO and sham-MCAO (n≥3). In a second experiment, rats were administered an IFNg neutralizing antibody following MCAO with a survival time of 96 h: vehicle control (n=4), goat IgG 5μg (n=7), and IFNg antibody 5μg (n=7). Spleens and brains were collected for all groups. Results: IP-10 levels were significantly elevated in the brain at 72 and 96 h post-MCAO (p<0.01) compared to naïve brains. In the spleen IP-10 levels become significantly elevated at 24 h and remain elevated out to 96 h post-MCAO (p<0.0007) compared to naïve spleens. Administration of a neutralizing antibody directed against IFNg significantly decreased IP-10 levels in the brain (p<0.009) but did not affect IP-10 levels in the spleen. Conclusion: These results demonstrate that increased production of IFNg results in elevated levels of IP-10 in both the spleen and the brain following stroke. However, administration of a neutralizing antibody against IFNg decreased the amount of IP-10 in the brain. Levels of IFNg and IP-10 in the brain increase at the same time following stroke. Based on these data, IFNg propagates a proinflammatory T helper cell response to stroke through IP-10. Inhibition of this signaling could reduce neuroinflammation thereby improving stroke outcome.


Sign in / Sign up

Export Citation Format

Share Document