Endoplasmic Reticulum Stress and NF-κB Pathway in Salidroside Mediated Neuroprotection: Potential of Salidroside in Neurodegenerative Diseases

2017 ◽  
Vol 45 (07) ◽  
pp. 1459-1475 ◽  
Author(s):  
Chenggui Wang ◽  
Yiting Lou ◽  
Jianxiang Xu ◽  
Zhenhua Feng ◽  
Yu Chen ◽  
...  

Microglial activation leads to increased production of proinflammatory enzymes and cytokines, which is considered to play crucial role in neurodegenerative diseases, however there are only a few drugs that target microglia activation. Recent studies have indicated that the Traditional Chinese Medicine, salidroside (Sal), exerted anti-inflammatory effects. According to this evidence, our present study aims to explore the effect of the Sal (a phenylpropanoid glycoside compound which is isolated from rhodiola), on microglia activation in lipopolysaccharide (LPS)-stimulated BV-2 cells. Our results showed that Sal could significantly inhibit the excessive production of Nitric Oxide (NO) and Prostaglandin E2 (PGE2) in LPS-stimulated BV2 cells. Moreover, Sal treatment could suppress the mRNA and protein expressions of inflammatory enzymes, including Inducible Nitric Oxide Synthase (iNOS) and Cyclooxygenase-2 (COX-2). The mechanisms may be related to the inhibition of the activation of Nuclear Factor-kappaB (NF-[Formula: see text]B) and endoplasmic reticulum stress. Our study demonstrated that salidroside could inhibit lipopolysaccharide-induced microglia activation via the inhibition of the NF-[Formula: see text]B pathway and endoplasmic reticulum stress, which makes it a promising therapeutic agent for human neurodegenerative diseases.

Marine Drugs ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. 130
Author(s):  
Yao-Tsung Yeh ◽  
Sung-Chun Lin ◽  
Gene-Hsiang Lee ◽  
Zhi-Hong Wen ◽  
Tsong-Long Hwang ◽  
...  

Two cembranoids, including a new compound, lobocrassin I (1), as well as a known analogue, lobohedleolide (2), were obtained by solvent extraction from octocoral Lobophytum crassum. This study employed a spectroscopic approach to establish the structures of these two cembranoids, and utilized single-crystal X-ray diffraction analysis to determine their absolute configurations. The results of biological activity assays demonstrated that cembranoid 2 exhibited bioactivity against the protein expressions of inducible nitric oxide synthase (iNOS) lipopolysaccharide (LPS)-treated RAW 264.7 mouse macrophage cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Chin-Chen Chen ◽  
Jiun-Tsai Lin ◽  
Yi-Fang Cheng ◽  
Cheng-Yi Kuo ◽  
Chun-Fang Huang ◽  
...  

Adenosine 5′-monophosphate-activated protein kinase (AMPK) is a key regulator of cellular energy homeostasis via modulating metabolism of glucose, lipid, and protein. In addition to energy modulation, AMPK has been demonstrated to associate with several important cellular events including inflammation. The results showed that ENERGI-F704 identified from bamboo shoot extract was nontoxic in concentrations up to 80 μM and dose-dependently induced phosphorylation of AMPK (Thr-172) in microglia BV2 cells. Our findings also showed that the treatment of BV2 with ENERGI-F704 ameliorated the LPS-induced elevation of IL-6 and TNF-αproduction. In addition, ENERGI-F704 reduced increased production of nitric oxide (NO) and prostaglandin E2 (PGE2) via downregulating the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), respectively. Moreover, ENERGI-F704 decreased activated nuclear translocation and protein level of NF-κB. Inhibition of AMPK with compound C restored decreased NF-κB translocation by ENERGI-F704. In conclusion, ENERGI-F704 exerts inhibitory activity on LPS-induced inflammation through manipulating AMPK signaling and exhibits a potential therapeutic agent for neuroinflammatory disease.


Sign in / Sign up

Export Citation Format

Share Document