DELAY GUARANTEE BACKUP ROUTE PLANNING FOR MULTICAST NETWORKS

2006 ◽  
Vol 23 (01) ◽  
pp. 25-39
Author(s):  
CHYI-BAO YANG ◽  
UE-PYNG WEN ◽  
CHING-CHIR SHYUR

This paper considers quality of service in terms of end-to-end delay in planning backup routes for multicast communications. The problem of preplanning backup routes considering both cost minimization and end-to-end delay guarantee for multicast communications in the case a single link failure is investigated. Two delay labels, the limited label and the tolerable label, are defined to evaluate the end-to-end delay requirement. Four heuristic algorithms, including two tree-based algorithms, one subtree-based algorithm, and one link-based algorithm, are proposed to determine the delay-constrained backup routes having the minimum costs. Two procedures to determine a node selection sequence, Random and Minimum-Cost, are used in the tree-based algorithm. Experimental results show that the tree-based algorithm by the Minimum-Cost sequence yields the best performance in cost minimization with guarantee of end-to-end delay.

Author(s):  
Manoj Kumar Patel ◽  
MANAS RANJAN KABAT ◽  
Chita Ranjan Tripathy

Many multimedia group applications require the construction of multicast tree satisfying the quality of service (QoS) requirements. To support real time communication, computer networks need to optimize the Delay and Delay-Variation Bounded Multicast Tree (DVBMT). The problem is to satisfy the end-to-end delay and delay-variation within an upper bound. The DVBMT problem is known to be NP complete. In this paper, we propose an efficient core selection algorithm for satisfying the end-to-end delay and delay-variation within an upper bound. The efficiency of the proposed algorithm is validated through the simulation. The simulation results reveal that our algorithm performs better than the existing heuristic algorithms.


Author(s):  
Francesco Lucrezia ◽  
Guido Marchetto ◽  
Fulvio Risso ◽  
Michele Santuari ◽  
Matteo Gerola

This paper describes a framework application for the control plane of a network infrastructure; the objective is to feature end-user applications with the capability of requesting at any time a customised end-to-end Quality-of-Service profile in the context of dynamic Service-Level-Agreements. Our solution targets current and future real-time applications that require tight QoS parameters, such as a guaranteed end-to-end delay bound. These applications include, but are not limited to, health-care, mobility, education, manufacturing, smart grids, gaming and much more. We discuss the issues related to the previous Integrated Service and the reason why the RSVP protocol for guaranteed QoS did not take off. Then we present a new signaling and resource reservation framework based on the cutting-edge network controller ONOS.  Moreover, the presented system foresees the need of considering the edges of the network, where terminal applications are connected to, to be piloted by distinct logically centralised controllers. We discuss a possible inter-domain communication mechanism to achieve the end-to-end QoS guarantee.


2013 ◽  
Vol 4 (4) ◽  
pp. 1-22
Author(s):  
Zrinka Lukač ◽  
Manuel Laguna

The recent development in network multimedia technology has created numerous real-time multimedia applications where the Quality-of-Service (QoS) requirements are quite rigorous. This has made multicasting under QoS constraints one of the most prominent routing problems. The authors consider the problem of the efficient delivery of data stream to receivers for multi-source communication groups. Efficiency in this context means to minimize cost while meeting bounds on the end-to-end delay of the application. The authors adopt the multi-core approach and utilize SPAN (Karaman and Hassane, 2007)—a core-based framework for multi-source group applications — as the basis to develop greedy randomized adaptive search procedures (GRASP) for the associated constrained cost minimization problem. The procedures are tested in asymmetric networks and computational results show that they consistently outperform their counterparts in the literature.


The wireless body area network is one of effective wearable devices that have been used in medical applications for collecting patient information to providing the treatment incorrect time for avoiding seriousness. The collected data’s such as blood pressure, air flow, temperature, electromagnetic information is transmitted to the health care center via the wireless technology, which reduces the difficulties also helps to provide the immediate treatment. During the information transmission, the main issues are Quality of Service (QoS), low packet delivery, high energy consumption and end to end delay. So, in this paper introduces the Fireflies Ant Optimized, Reliable Quality Awareness, Energy Efficient Routing Protocol ((FAORQEER) for maintaining the quality of the recorded medical data. The network examines the optimal path by using the characteristics of fireflies and the network life time and energy of the network is managed by introducing an energy efficient method. The process then evaluates efficiency with test results about energy consumption, packet delivery ratio, end to end delay and QoS metric associated constraints.


Sign in / Sign up

Export Citation Format

Share Document