LONG-RANGE INTERACTIONS BETWEEN DARK-MATTER PARTICLES IN A MODEL WITH A COSMOLOGICAL, SPONTANEOUSLY-BROKEN CHIRAL SYMMETRY

2005 ◽  
Vol 20 (15) ◽  
pp. 1155-1160 ◽  
Author(s):  
SAUL BARSHAY ◽  
GEORG KREYERHOFF

In a cosmological model with a chiral symmetry, there are two, dynamically-related spin-zero fields, a scalar ϕ and a pseudoscalar b. These fields have self-interactions. Spontaneous symmetry breaking results in a very massive scalar particle with mϕ≅5×1011 GeV , and a nearly massless, (Goldstone-like) pseudoscalar particle with 0<mb≲2.7×10-6 eV . One or both particles can be part of dark matter. There are coherent long-range interactions (at range ~ 1/mb≳10 cm ), from exchange of a b particle between a pair of b particles, a pair of ϕ particles, and between a ϕ and a b. We compare the strength of potentials for the different pairs to the corresponding gravitational potentials (within the same range ~ 1/mb), and show that the new force dominates between a b pair, that gravitation dominates between a ϕ pair, and that the potentials are comparable for a ϕ-b pair. The new interaction strength between a b pair is comparable to the gravitational interaction between a ϕ pair; its possibly greater coherent effect originates in the possibility that the number density of a very light b can be greater than that of a massive ϕ. We consider these results in the context of recent speculations concerning possible effects of special forces between dark-matter particles on certain galactic, and inter-galactic, properties.

2022 ◽  
Vol 2022 (01) ◽  
pp. 016
Author(s):  
Cristian Gaidau ◽  
Jessie Shelton

Abstract We re-examine the gravitational capture of dark matter (DM) through long-range interactions. We demonstrate that neglecting the thermal motion of target particles, which is often a good approximation for short-range capture, results in parametrically inaccurate results for long-range capture. When the particle mediating the scattering process has a mass that is small in comparison to the momentum transfer in scattering events, correctly incorporating the thermal motion of target particles results in a quadratic, rather than logarithmic, sensitivity to the mediator mass, which substantially enhances the capture rate. We quantitatively assess the impact of this finite temperature effect on the captured DM population in the Sun as a function of mediator mass. We find that capture of DM through light dark photons, as in e.g. mirror DM, can be powerfully enhanced, with self-capture attaining a geometric limit over much of parameter space. For visibly-decaying dark photons, thermal corrections are not large in the Sun, but may be important in understanding long-range DM capture in more massive bodies such as Population III stars. We additionally provide the first calculation of the long-range DM self-evaporation rate.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 371
Author(s):  
Koua

The Mn4CaO5 cluster site in the oxygen-evolving complex (OEC) of photosystem II (PSII) undergoes structural perturbations, such as those induced by Ca2+/Sr2+ exchanges or Ca/Mn removal. These changes have been known to induce long-range positive shifts (between +30 and +150 mV) in the redox potential of the primary quinone electron acceptor plastoquinone A (QA), which is located 40 Å from the OEC. To further investigate these effects, we reanalyzed the crystal structure of Sr-PSII resolved at 2.1 Å and compared it with the native Ca-PSII resolved at 1.9 Å. Here, we focus on the acceptor site and report the possible long-range interactions between the donor, Mn4Ca(Sr)O5 cluster, and acceptor sites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Metzner ◽  
F. Hörsch ◽  
C. Mark ◽  
T. Czerwinski ◽  
A. Winterl ◽  
...  

AbstractChemotaxis enables cells to systematically approach distant targets that emit a diffusible guiding substance. However, the visual observation of an encounter between a cell and a target does not necessarily indicate the presence of a chemotactic approach mechanism, as even a blindly migrating cell can come across a target by chance. To distinguish between the chemotactic approach and blind migration, we present an objective method that is based on the analysis of time-lapse recorded cell migration trajectories: For each movement step of a cell relative to the position of a potential target, we compute a p value that quantifies the likelihood of the movement direction under the null-hypothesis of blind migration. The resulting distribution of p values, pooled over all recorded cell trajectories, is then compared to an ensemble of reference distributions in which the positions of targets are randomized. First, we validate our method with simulated data, demonstrating that it reliably detects the presence or absence of remote cell-cell interactions. In a second step, we apply the method to data from three-dimensional collagen gels, interspersed with highly migratory natural killer (NK) cells that were derived from two different human donors. We find for one of the donors an attractive interaction between the NK cells, pointing to a cooperative behavior of these immune cells. When adding nearly stationary K562 tumor cells to the system, we find a repulsive interaction between K562 and NK cells for one of the donors. By contrast, we find attractive interactions between NK cells and an IL-15-secreting variant of K562 tumor cells. We therefore speculate that NK cells find wild-type tumor cells only by chance, but are programmed to leave a target quickly after a close encounter. We provide a freely available Python implementation of our p value method that can serve as a general tool for detecting long-range interactions in collective systems of self-driven agents.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
B. Basu-Mallick ◽  
F. Finkel ◽  
A. González-López

Abstract We introduce a new class of open, translationally invariant spin chains with long-range interactions depending on both spin permutation and (polarized) spin reversal operators, which includes the Haldane-Shastry chain as a particular degenerate case. The new class is characterized by the fact that the Hamiltonian is invariant under “twisted” translations, combining an ordinary translation with a spin flip at one end of the chain. It includes a remarkable model with elliptic spin-spin interactions, smoothly interpolating between the XXX Heisenberg model with anti-periodic boundary conditions and a new open chain with sites uniformly spaced on a half-circle and interactions inversely proportional to the square of the distance between the spins. We are able to compute in closed form the partition function of the latter chain, thereby obtaining a complete description of its spectrum in terms of a pair of independent su(1|1) and su(m/2) motifs when the number m of internal degrees of freedom is even. This implies that the even m model is invariant under the direct sum of the Yangians Y (gl(1|1)) and Y (gl(0|m/2)). We also analyze several statistical properties of the new chain’s spectrum. In particular, we show that it is highly degenerate, which strongly suggests the existence of an underlying (twisted) Yangian symmetry also for odd m.


Sign in / Sign up

Export Citation Format

Share Document