scholarly journals Thermodynamics of Dyonic NUT Charged Black Holes with entropy as Noether charge

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Niloofar Abbasvandi ◽  
Masoumeh Tavakoli ◽  
Robert B. Mann

Abstract We investigate the thermodynamic behaviour of Lorentzian Dyonic Taub-NUT Black Hole spacetimes. We consider two possibilities in their description: one in which their entropy is interpreted to be one quarter of the horizon area (the horizon entropy), and another in which the Misner string also contributes to the entropy (the Noether charge entropy). We find that there can be as many as three extremal black holes (or as few as zero) depending on the choice of parameters, and that the dependence of the free energy on temperature — and the resultant phase behaviour — depends very much on which of these situations holds. Some of the phase behaviour we observe holds regardless of which interpretation of the entropy holds. However another class of phase transition structures occurs only if the Noether charge interpretation of the entropy is adopted.

2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Shahar Hod

AbstractIt has recently been revealed that massless scalar fields which are non-minimally coupled to the Maxwell electromagnetic tensor can be supported in the exterior spacetime regions of spherically symmetric charged black holes. The boundary between scalarized charged black-hole spacetimes and bald (scalarless) Reissner–Nordström black holes is determined by the presence of a critical existence-line which describes spatially regular linearized scalar ‘clouds’ that are supported in the black-hole spacetime. In the present paper we use analytical techniques in order to solve the Klein–Gordon wave equation for the non-minimally coupled linearized scalar fields in the spacetimes of near-extremal supporting black holes. In particular, we derive a remarkably compact analytical formula for the discrete resonant spectrum $$\{\alpha (l,Q/M;n)\}^{n=\infty }_{n=1}$$ { α ( l , Q / M ; n ) } n = 1 n = ∞ which characterizes the dimensionless coupling parameter of the composed Reissner–Nordström-black-hole-nonminimally-coupled-massless-scalar-field configurations along the critical existence-line of the Einstein–Maxwell-scalar theory (here Q/M is the dimensionless charge-to-mass ratio of the central supporting black hole and l is the angular harmonic index of the supported scalar configurations).


2020 ◽  
Vol 35 (23) ◽  
pp. 2050193
Author(s):  
Cai-Ying Shao ◽  
Yu Hu ◽  
Yu-Jie Tan ◽  
Cheng-Gang Shao ◽  
Kai Lin ◽  
...  

In this paper, we study the quasinormal modes of the massless Dirac field for charged black holes in Rastall gravity. The spherically symmetric black hole solutions in question are characterized by the presence of a power-Maxwell field, surrounded by the quintessence fluid. The calculations are carried out by employing the WKB approximations up to the 13th-order, as well as the matrix method. The temporal evolution of the quasinormal modes is investigated by using the finite difference method. Through numerical simulations, the properties of the quasinormal frequencies are analyzed, including those for the extremal black holes. Among others, we explore the case of a second type of extremal black holes regarding the Nariai solution, where the cosmical and event horizon coincide. The results obtained by the WKB approaches are found to be mostly consistent with those by the matrix method. It is observed that the magnitudes of both real and imaginary parts of the quasinormal frequencies increase with increasing [Formula: see text], the spin–orbit quantum number. Also, the roles of the parameters [Formula: see text] and [Formula: see text], associated with the electric charge and the equation of state of the quintessence field, respectively, are investigated regarding their effects on the quasinormal frequencies. The magnitude of the electric charge is found to sensitively affect the time scale of the first stage of quasinormal oscillations, after which the temporal oscillations become stabilized. It is demonstrated that the black hole solutions for Rastall gravity in asymptotically flat spacetimes are equivalent to those in Einstein gravity, featured by different asymptotical spacetime properties. As one of its possible consequences, we also investigate the behavior of the late-time tails of quasinormal models in the present model. It is found that the asymptotical behavior of the late-time tails of quasinormal modes in Rastall theory is governed by the asymptotical properties of the spacetimes of their counterparts in Einstein gravity.


2006 ◽  
Vol 21 (22) ◽  
pp. 1737-1748 ◽  
Author(s):  
Y. S. MYUNG ◽  
H. W. LEE

We study the wave equation for a massive scalar in three-dimensional AdS-black hole spacetimes to understand the unitarity issues in a semiclassical way. Here we introduce four interesting spacetimes: the non-rotating BTZ black hole (NBTZ), pure AdS spacetime (PADS), massless BTZ black hole (MBTZ), and extremal BTZ black hole (EBTZ). Our method is based on the potential analysis and solving the wave equation to find the condition for the frequency ω exactly. In the NBTZ case, one finds the quasinormal (complex and discrete) modes which signals for a non-unitary evolution. Real and discrete modes are found for the PADS case, which means that it is unitary obviously. On the other hand, we find real and continuous modes for the two extremal black holes of MBTZ and EBTZ. It suggests that these could be candidates for the unitary system.


2008 ◽  
Vol 23 (09) ◽  
pp. 667-676 ◽  
Author(s):  
YUN SOO MYUNG

We discuss the phase transition between non-extremal and extremal Reissner–Nordström black holes. This transition is considered as the T → 0 limit of the transition between the non-extremal and near-extremal black holes. We show that an evaporating process from non-extremal black hole to extremal one is possible to occur, but its reverse process is not possible because of the presence of the maximum temperature. Furthermore, it is shown that the Hawking–Page phase transition between small and large black holes is unlikely to occur in the AdS Reissner–Nordström black holes.


2019 ◽  
Vol 34 (30) ◽  
pp. 1950248 ◽  
Author(s):  
Koray Düztaş ◽  
Mubasher Jamil

In this work, we attempt to overcharge extremal and nearly extremal charged black holes in string theory, known as the Garfinkle–Horowitz–Strominger solution. We first show that extremal black holes cannot be overcharged analogous to the case of Reissner–Nordström (RN) black holes. Contrary to their analog in general relativity, nearly extremal black holes can neither be overcharged beyond extremality, nor can they be driven to extremality by the interaction with test particles. Therefore, the analysis in this work also implies that the third law of black hole thermodynamics holds for the relevant charged black holes in string theory perturbed by test particles. This can be interpreted as a stronger version of the third law since one can drop out the continuity proviso for the relevant process.


2018 ◽  
Vol 73 (11) ◽  
pp. 1061-1073 ◽  
Author(s):  
N.A. Hussein ◽  
D.A. Eisa ◽  
T.A.S. Ibrahim

AbstractThis paper aims to obtain the thermodynamic variables (temperature, thermodynamic volume, angular velocity, electrostatic potential, and heat capacity) corresponding to the Schwarzschild black hole, Reissner-Nordstrom black hole, Kerr black hole and Kerr-Newman-Anti-de Sitter black hole. We also obtained the free energy for black holes by using three different methods. We obtained the equation of state for rotating Banados, Teitelboim and Zanelli black holes. Finally, we used the quantum correction of the partition function to obtain the heat capacity and entropy in the quantum sense.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Lars Aalsma ◽  
Alex Cole ◽  
Gregory J. Loges ◽  
Gary Shiu

Abstract The mild form of the Weak Gravity Conjecture states that quantum or higher-derivative corrections should decrease the mass of large extremal charged black holes at fixed charge. This allows extremal black holes to decay, unless protected by a symmetry (such as supersymmetry). We reformulate this conjecture as an integrated condition on the effective stress tensor capturing the effect of quantum or higher-derivative corrections. In addition to charged black holes, we also consider rotating BTZ black holes and show that this condition is satisfied as a consequence of the c-theorem, proving a spinning version of the Weak Gravity Conjecture. We also apply our results to a five-dimensional boosted black string with higher-derivative corrections. The boosted black string has a BTZ×S2 near-horizon geometry and, after Kaluza-Klein reduction, describes a four-dimensional charged black hole. Combining the spinning and charged Weak Gravity Conjecture we obtain positivity bounds on the five-dimensional Wilson coefficients that are stronger than those obtained from charged black holes alone.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Yi Ling ◽  
Yuxuan Liu ◽  
Zhuo-Yu Xian

Abstract We study the information paradox for the eternal black hole with charges on a doubly-holographic model in general dimensions, where the charged black hole on a Planck brane is coupled to the baths on the conformal boundaries. In the case of weak tension, the brane can be treated as a probe such that its backreaction to the bulk is negligible. We analytically calculate the entanglement entropy of the radiation and obtain the Page curve with the presence of an island on the brane. For the near-extremal black holes, the growth rate is linear in the temperature. Taking both Dvali-Gabadadze-Porrati term and nonzero tension into account, we obtain the numerical solution with backreaction in four-dimensional spacetime and find the quantum extremal surface at t = 0. To guarantee that a Page curve can be obtained in general cases, we propose two strategies to impose enough degrees of freedom on the brane such that the black hole information paradox can be properly described by the doubly-holographic setup.


2011 ◽  
Vol 26 (20) ◽  
pp. 3469-3489 ◽  
Author(s):  
SOUVIK BANERJEE ◽  
SAYAN K. CHAKRABARTI ◽  
SUDIPTA MUKHERJI ◽  
BINATA PANDA

We argue that a convenient way to analyze instabilities of black holes in AdS space is via Bragg–Williams construction of a free energy function. Starting with a pedagogical review of this construction in condensed matter systems and also its implementation to Hawking–Page transition, we study instabilities associated with hairy black holes and also with the R-charged black holes. For the hairy black holes, an analysis of thermal quench is presented.


2020 ◽  
Vol 35 (24) ◽  
pp. 2050203
Author(s):  
M. Ghanaatian ◽  
Mehdi Sadeghi ◽  
Hadi Ranjbari ◽  
Gh. Forozani

In this paper, we study AdS-Schwarzschild black holes in four and five dimensions in dRGT minimally coupled to a cloud of strings. It is observed that the entropy of the string cloud and massive terms does not affect the black hole entropy. The observations about four dimensions indicate that the massive term in the presence of external string cloud cannot exhibit Van der Waals-like behavior for AdS-Schwarzschild black holes and, therefore there is only the Hawking–Page phase transition. In contrast, in five dimensions, the graviton mass modifies this behavior through the third massive term, so that a critical behavior and second-order phase transition is deduced. Also, the Joule–Thomson effect is not observed. The black hole stability conditions are also studied in four and five dimensions and a critical value for the string cloud parameter is presented. In five dimensions a degeneracy between states for extremal black holes is investigated. After studying black holes as thermodynamic systems, we consider such systems as heat engines, and finally the efficiency of them is calculated.


Sign in / Sign up

Export Citation Format

Share Document