Tokyo large air shower project

1968 ◽  
Vol 46 (10) ◽  
pp. S255-S258 ◽  
Author(s):  
T. Matano ◽  
M. Nagano ◽  
K. Suga ◽  
G. Tanahashi

A preliminary experiment to detect large air showers by means of radio echoes and to study the high-energy end of the primary cosmic-ray energy spectrum has been started at this Institute. The fundamental idea and the first approach of the experiment are presented. Using the telemetry system between two pairs of a simple scintillation array, which has been constructed to identify and calibrate the showers in the above experiment, the decoherence curve of air showers has been measured between 100 and 1 300 m together with the particle density in each detector. This simple experiment will give the power of the size spectrum above 109.


2019 ◽  
Vol 216 ◽  
pp. 02004 ◽  
Author(s):  
Fabrizia Canfora

The mass composition of ultra-high-energy cosmic rays plays a key role in the understanding of the origins ofthese rare particles. A composition-sensitive observable is the atmospheric depth at which the air shower reaches the maximum number of particles (Xmax). The Auger Engineering Radio Array (AERA) detects the radio emission inthe 30-80 MHz frequency band from extensive air showers with energies larger than 1017 eV. It consists of more than 150 autonomous radio stations covering an area of about 17 km2. From the distribution of signals measured by the antennas, it is possible to estimate Xmax. In this contribution three independent methods for the estimation of Xmax will be presented.



2015 ◽  
Vol 754-755 ◽  
pp. 807-811
Author(s):  
A.A. Al-Rubaiee ◽  
Uda Hashim ◽  
Mohd Khairuddin Md Arshad ◽  
A. Rahim Ruslinda ◽  
R.M. Ayub ◽  
...  

The simulation of Cherenkov light Lateral distribution function (LDF) in Extensive Air Showers (EAS) initiated primary particles such as primary calcium, argon, proton iron nuclei, neutron and nitrogen have been performed using CORSIKA program for conditions and configurations of Tunka133 EAS Cherenkov array. The simulation was fulfilled at the high energy range 1014-1016eV for four different zenith angles 0o, 10o, 15oand 30o. The results of the simulated Cherenkov light LDF are compared with the measurements of Tunka133 EAS array for the same particles and energy range mentioned above. This comparison may give the good ability to reconstruct the energy spectrum and mass composition of the primary cosmic ray particles in EAS. The main feature of the given approach consists of the possibility to make a library of Cherenkov light LDF samples which could be utilized for analysis of real events which can be detected with different EAS arrays and reconstruction of the primary cosmic rays energy spectrum and mass composition of EAS particles.



2006 ◽  
Vol 21 (supp01) ◽  
pp. 192-196 ◽  
Author(s):  
D. ARDOUIN ◽  
A. BELLETOILE ◽  
D. CHARRIER ◽  
R. DALLIER ◽  
L. DENIS ◽  
...  

The CODALEMA experimental device currently detects and characterizes the radio contribution of cosmic ray air showers : arrival directions and electric field topologies of radio transient signals associated to cosmic rays are extracted from the antenna signals. The measured rate, about 1 event per day, corresponds to an energy threshold around 5.1016eV. These results allow to determine the perspectives offered by the present experimental design for radiodetection of Ultra High Energy Cosmic Rays at a larger scale.



2019 ◽  
Vol 216 ◽  
pp. 02012
Author(s):  
T. Marshalkina ◽  
P.A. Bezyazeekov ◽  
N.M. Budnev ◽  
D. Chernykh ◽  
O. Fedorov ◽  
...  

The Tunka Radio Extension (Tunka-Rex) is a digital antenna array for the detection of radio emission from cosmic-ray air showers in the frequency band of 30 to 80 MHz and for primary energies above 100 PeV. The standard analysis of Tunka-Rex includes events with zenith angle of up to 50?. This cut is determined by the efficiency of the external trigger. However, due to the air-shower footprint increasing with zenith angle and due to the more efficient generation of radio emission (the magnetic field in the Tunka valley is almost vertical), there are a number of ultra-high-energy inclined events detected by Tunka-Rex. In this work we present a first analysis of a subset of inclined events detected by Tunka-Rex. We estimate the energies of the selected events and test the efficiency of Tunka-Rex antennas for detection of inclined air showers.



2012 ◽  
Vol 27 (39) ◽  
pp. 1230038 ◽  
Author(s):  
ALESSIO TAMBURRO

The IceCube Observatory at the South Pole is composed of a cubic kilometer scale neutrino telescope buried beneath the icecap and a square-kilometer surface water Cherenkov tank detector array known as IceTop. The combination of the surface array with the in-ice detector allows the dominantly electromagnetic signal of air showers at the surface and their high-energy muon signal in the ice to be measured in coincidence. This ratio is known to carry information about the nuclear composition of the primary cosmic rays. This paper reviews the recent results from cosmic-ray measurements performed with IceTop/IceCube: energy spectrum, mass composition, anisotropy, search for PeV γ sources, detection of high energy muons to probe the initial stages of the air shower development, and study of transient events using IceTop in scaler mode.



1968 ◽  
Vol 46 (10) ◽  
pp. S13-S16 ◽  
Author(s):  
B. K. Chatterjee ◽  
G. T. Murthy ◽  
S. Naranan ◽  
K. Sivaprasad ◽  
B. V. Sreekantan ◽  
...  

Measurements have been made on high-energy muons (>220 GeV and >640 GeV) in extensive air showers in the size range 105–107 particles. Results on the energy spectrum, lateral spread (for Eμ > 220 GeV), and the dependence of the total number of muons on the shower size are given. The relation between the number of muons (Nμ) and the shower size (N) can be expressed as[Formula: see text]Assuming an exponential lateral distribution of high-energy muons, the average lateral spread of muons of energy >220 GeV has been found to be ~40 m.The results are compared with the predictions of the calculations done by Murthy et al. (1967).



2007 ◽  
Vol 22 (21) ◽  
pp. 1533-1551 ◽  
Author(s):  
JÖRG R. HÖRANDEL

The energies of cosmic rays, fully ionized charged nuclei, extend over a wide range up to 1020 eV. A particularly interesting energy region spans from 1014 to 1018 eV, where the all-particle energy spectrum exhibits two interesting structures, the "knee" and the "second knee". An explanation of these features is thought to be an important step in understanding the origin of the high-energy particles. Recent results of air shower experiments in this region are discussed. Special attention is drawn to explain the principle of air shower measurements — a simple Heitler model of (hadronic) air showers is developed.



Computer simulations have been made of the average characteristics of extensive air showers initiated by primary protons in a wide range of energy. The simulations, which are perhaps unusual in the detailed information available for each shower, have been made as part of a design study for future experiments intended to identify the mass number of energetic primaries. The sensitivity of the data from our simulations to the detail of the adopted model for interactions has been investigated by incorporating the consequences of the results from recent accelerator and cosmic ray experiments. The simulations have been made by means of a variety of computational techniques; in most simulations a simple representation of the interaction of high-energy nucleons and pions has been employed which is characterized by accounting well for presently available experimental data on large air showers. We conclude that the treatment of showers, although derived with a simple model for interactions, may be usefully employed to study the fluctuations in air-shower development.



2007 ◽  
Vol 22 (11) ◽  
pp. 749-766 ◽  
Author(s):  
MARKUS RISSE ◽  
PIOTR HOMOLA

The observation of photons with energies above 1018 eV would open a new window in cosmic-ray research, with possible impact on astrophysics, particle physics, cosmology and fundamental physics. Current and planned air shower experiments, particularly the Pierre Auger Observatory, offer an unprecedented opportunity to search for such photons and to complement efforts of multimessenger observations of the universe. We summarize motivation, achievements, and prospects of the search for ultra-high energy photons.



2021 ◽  
Vol 2105 (1) ◽  
pp. 012018
Author(s):  
S Nonis ◽  
A Leisos ◽  
A Tsirigotis ◽  
G Bourlis ◽  
K Papageorgiou ◽  
...  

Abstract The Astroneu cosmic ray telescope is a distributed hybrid array consisting of both scintillator counters and RF antenna detectors used for the detection of extensive air showers (EAS). The array is deployed at the Hellenic Open University campus, on the outskirts of the urban area of Patras in Greece. In the present development phase, the Astroneu telescope includes two stations consisting of 3 scintillation detectors modules (SDM) and one RF antenna while a third station includes 3 particle detectors and 4 RF antennas (3SDM-4RF). In each station, the RF-detectors are operating receiving a common trigger upon a 3-fold coincidence between the particle detectors of the station. In this study we present recent results from the 3SDM-4RF autonomous station related to the estimation of the direction of the incoming cosmic air shower using only the timing information from the 4 RF detectors. The directions of the reconstructed showers using the RF timing are in agreement with the corresponding results using the SDMs timing as well as with the simulation predictions. This verifies that the RF signal emitted from EAS originating form Ultra High Energy Cosmic Rays (UHECR), can be detected even in areas with strong electromagnetic background.



Sign in / Sign up

Export Citation Format

Share Document