DISTINGUISHABILITY OF NEUTRINO FLAVORS THROUGH THEIR DIFFERENT SHOWER CHARACTERISTICS

2013 ◽  
Vol 28 (02) ◽  
pp. 1340009 ◽  
Author(s):  
CHIH-CHING CHEN ◽  
PISIN CHEN ◽  
CHIA-YU HU ◽  
K.-C. LAI

We propose a new flavor identification method to distinguish mu and tau type ultra high energy cosmic neutrinos (UHECN). Energy loss of leptons in matter is an important information for the detection of neutrinos originated from high energy astrophysical sources. 50 years ago, Askaryan proposed to detect Cherenkov radiowave signals emitted from the negative charge excess of neutrino-induced particle shower. The theory of Cherenkov radiation under Fraunhofer approximation has been widely studied in the past two decades. However, at high energies or for high density materials, electromagnetic shower should be elongated due to the Landau-Pomeranchuck-Migdal (LPM) effect. As such the standard Fraunhofer approximation ceases to be valid when the distance between the shower and the detector becomes comparable with the shower length. Monte Carlo simulations have been performed recently to investigate this regime. Here we adopt the deduced relationship between the radio signal and the cascade development profile to investigate its implication to lepton signatures. Our method provides a straightforward technique to identify the neutrino flavor through the detected Cherenkov signals.

2019 ◽  
Vol 210 ◽  
pp. 01005 ◽  
Author(s):  
J. Biteau ◽  
T. Bister ◽  
L. Caccianiga ◽  
O. Deligny ◽  
A. di Matteo ◽  
...  

Despite deflections by Galactic and extragalactic magnetic fields, the distribution of ultra-high energy cosmic rays (UHECRs) over the celestial sphere remains a most promising observable for the identification of their sources. Thanks to a large number of detected events over the past years, a large-scale anisotropy at energies above 8 EeV has been identified, and there are also indications from the Telescope Array and Pierre Auger Collaborations of deviations from isotropy at intermediate angular scales (about 20 degrees) at the highest energies. In this contribution, we map the flux of UHECRs over the full sky at energies beyond each of two major features in the UHECR spectrum – the ankle and the flux suppression -, and we derive limits for anisotropy on different angular scales in the two energy regimes. In particular, full-sky coverage enables constraints on low-order multipole moments without assumptions about the strength of higher-order multipoles. Following previous efforts from the two Collaborations, we build full-sky maps accounting for the relative exposure of the arrays and differences in the energy normalizations. The procedure relies on cross-calibrating the UHECR fluxes reconstructed in the declination band around the celestial equator covered by both observatories. We present full-sky maps at energies above ~ 10 EeV and ~ 50 EeV, using the largest datasets shared across UHECR collaborations to date. We report on anisotropy searches exploiting full-sky coverage and discuss possible constraints on the distribution of UHECR sources.


2020 ◽  
Vol 497 (3) ◽  
pp. 2553-2561
Author(s):  
Felicia Krauß ◽  
Emily Calamari ◽  
Azadeh Keivani ◽  
Alexis Coleiro ◽  
Phil A Evans ◽  
...  

ABSTRACT High-energy neutrinos are a promising tool for identifying astrophysical sources of high and ultra-high energy cosmic rays (UHECRs). Prospects of detecting neutrinos at high energies (≳TeV) from blazars have been boosted after the recent association of IceCube-170922A and TXS 0506+056. We investigate the high-energy neutrino, IceCube-190331A, a high-energy starting event (HESE) with a high likelihood of being astrophysical in origin. We initiated a Swift/XRT and UVOT tiling mosaic of the neutrino localization and followed up with ATCA radio observations, compiling a multiwavelength spectral energy distribution (SED) for the most likely source of origin. NuSTAR observations of the neutrino location and a nearby X-ray source were also performed. We find two promising counterpart in the 90 per cent confidence localization region and identify the brightest as the most likely counterpart. However, no Fermi/LAT γ-ray source and no prompt Swift/BAT source is consistent with the neutrino event. At this point, it is unclear whether any of the counterparts produced IceCube-190331A. We note that the Helix Nebula is also consistent with the position of the neutrino event and we calculate that associated particle acceleration processes cannot produce the required energies to generate a high-energy HESE neutrino.


2015 ◽  
Vol 2 ◽  
pp. 39-44 ◽  
Author(s):  
P. L. Biermann ◽  
L. I. Caramete ◽  
A. Meli ◽  
B. N. Nath ◽  
E.-S. Seo ◽  
...  

Abstract. A model is introduced, in which the irregularity spectrum of the Galactic magnetic field beyond the dissipation length scale is first a Kolmogorov spectrum k-5/3 at small scales λ = 2 π/k with k the wave-number, then a saturation spectrum k-1, and finally a shock-dominated spectrum k-2 mostly in the halo/wind outside the Cosmic Ray disk. In an isotropic approximation such a model is consistent with the Interstellar Medium (ISM) data. With this model we discuss the Galactic Cosmic Ray (GCR) spectrum, as well as the extragalactic Ultra High Energy Cosmic Rays (UHECRs), their chemical abundances and anisotropies. UHECRs may include a proton component from many radio galaxies integrated over vast distances, visible already below 3 EeV.


2016 ◽  
Vol 31 (02n03) ◽  
pp. 1641016
Author(s):  
A. A. Grib ◽  
Yu. V. Pavlov

Three mechanisms of getting high energies in particle collisions in the ergosphere of the rotating black holes are considered. The consequences of these mechanisms for observation of ultra high energy cosmic rays particles on the Earth as result of conversion of superheavy dark matter particles into ordinary particles are discussed.


2011 ◽  
Vol 01 ◽  
pp. 151-156
Author(s):  
FENG-YIN CHANG ◽  
PISIN CHEN ◽  
GUEY-LIN LIN ◽  
ROBERT NOBLE ◽  
RICHARD SYDORA

Magnetowave induced plasma wakefield acceleration (MPWA) in a relativistic astrophysical outflow has been proposed as a viable mechanism for the acceleration of cosmic particles to ultra high energies. In this paper we present the relativistic MPWA theory and confirm such a concept via the plasma simulation. Invoking Active Galactic Nuclei (AGN) as the site, we show that MPWA production of ultra high energy cosmic rays (UHECR) beyond ZeV (1021 eV) is possible.


2019 ◽  
Vol 208 ◽  
pp. 03005
Author(s):  
Eduardo de la Fuente ◽  
Juan Carlos Díaz–Vélez ◽  
Paolo Desiati ◽  
Jose Luis García–Luna ◽  
Janet Torrealba ◽  
...  

The detection of astroparticles, specially at high energies (>100 GeV), requires special techniques and instruments (telescopes or observatories), for example, those that use the Water Cherenkov radiation technique. In this paper we show an example of how Information Technologies can be used to perform maps and produce high impact results. The latter case is illustrated in the summary of the generation of a high statistics map of cosmic rays at 10 TeV in the northern sky with data collected by the High Altitude Water Cherenkov (HAWC) observatory.


2003 ◽  
Vol 12 (07) ◽  
pp. 1279-1287 ◽  
Author(s):  
J. W. MOFFAT

We propose that local Lorentz invariance is spontaneously violated at high energies, due to a nonvanishing vacuum expectation value of a vector field ϕμ, as a possible explanation of the observation of ultra-high energy cosmic rays with an energy above the GZK cutoff. Certain consequences of spontaneous breaking of Lorentz invariance in cosmology are discussed.


Sign in / Sign up

Export Citation Format

Share Document