scholarly journals Lorentz violation, gravitoelectromagnetism and Bhabha scattering at finite temperature

2018 ◽  
Vol 33 (10n11) ◽  
pp. 1850061 ◽  
Author(s):  
A. F. Santos ◽  
Faqir C. Khanna

Gravitoelectromagnetism (GEM) is an approach for the gravitation field that is described using the formulation and terminology similar to that of electromagnetism. The Lorentz violation is considered in the formulation of GEM that is covariant in its form. In practice, such a small violation of the Lorentz symmetry may be expected in a unified theory at very high energy. In this paper, a non-minimal coupling term, which exhibits Lorentz violation, is added as a new term in the covariant form. The differential cross-section for Bhabha scattering in the GEM framework at finite temperature is calculated that includes Lorentz violation. The Thermo Field Dynamics (TFD) formalism is used to calculate the total differential cross-section at finite temperature. The contribution due to Lorentz violation is isolated from the total cross-section. It is found to be small in magnitude.

2020 ◽  
Vol 35 (26) ◽  
pp. 2050213
Author(s):  
A. F. Santos ◽  
Faqir C. Khanna

A formal analogy between the gravitational and the electromagnetic fields leads to the notion of Gravitoelectromagnetism (GEM) to describe gravitation. A Lagrangian formulation for GEM is developed for scattering processes with gravitons as an intermediate state, in addition to photons for electromagnetic scattering. The differential cross section is calculated for gravitational Möller scattering based on GEM theory. This gravitational cross section is obtained for cases where the Lorentz symmetry is maintained or violated. The Lorentz violation is introduced with the non-minimal coupling term. In addition, using the Thermo Field Dynamics formalism, thermal corrections to the differential cross section are investigated. By comparing the electromagnetic and GEM versions, of Möller scattering, it is shown that the gravitational effect may be measured at an appropriate energy scale.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Alesandro Ferreira dos Santos ◽  
Faqir C. Khanna

Abstract In this paper the differential cross section for Bhabha scattering in the very special relativity (VSR) framework is calculated. The main characteristic of the VSR is to modify the gauge invariance. This leads to different types of interactions appearing in a non-local form. In addition, using the Thermo Field Dynamics formalism, thermal corrections for the differential cross section of Bhabha scattering in VSR framework are obtained.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Alesandro F. Santos ◽  
Faqir C. Khanna

Lorentz and CPT symmetries may be violated in new physics that emerges at very high energy scale, that is, at the Planck scale. The differential cross section of the Möller scattering due to Lorentz violation at finite temperature is calculated. Lorentz-violating effects emerge from an interaction vertex due to a CPT-odd nonminimal coupling in the covariant derivative. The finite temperature effects are determined using the Thermo Field Dynamics (TFD) formalism.


2019 ◽  
Vol 34 (08) ◽  
pp. 1950044
Author(s):  
A. F. Santos ◽  
Faqir C. Khanna

A Lagrangian formulation of Gravitoelectromagnetism (GEM) theory is considered. GEM is a gravitational theory that emerges from a formal analogy between electromagnetism and gravity. Using this, the differential cross-section of the gravitational Möller scattering at finite temperature is calculated. The temperature effects are introduced using the Thermo Field Dynamics (TFD) formalism.


2009 ◽  
Vol 23 (20n21) ◽  
pp. 2573-2584 ◽  
Author(s):  
A. R. MKRTCHYAN ◽  
A. A. SAHARIAN ◽  
V. V. PARAZIAN

In the present paper, we investigate coherent bremsstrahlung of high energy electrons moving in a periodically deformed single crystal with a complex base. The formula for corresponding differential cross-section is derived for an arbitrary deformation field. The conditions are discussed under which the influence of the deformation is important. The case is considered in detail when the electron enters into the crystal at small angles with respect to a crystallographic axis. It is shown that in dependence of the parameters, the presence of the deformation can either enhance or reduce the bremsstrahlung cross-section.


1992 ◽  
Vol 07 (21) ◽  
pp. 1905-1913 ◽  
Author(s):  
M. KAWASAKI ◽  
T. MAEHARA ◽  
M. YONEZAWA

Unitarity bounds for the differential cross-section of high-energy elastic hadron-hadron scattering are obtained under the constraints of fixed total cross-section σt, elasticity x, real part to imaginary part ratio ρ of the forward scattering amplitude, and forward slope b by assuming a finite interaction range. The obtained upper bound has an observed curvature structure at small momentum transfers and is nearly saturated by the experimental data of pp and [Formula: see text] scattering at −t=0−0.3 (GeV/c)2 in the energy region [Formula: see text] , if we take the interaction radius scaled as [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document