Accelerated frames and galactic rotation curves

2019 ◽  
Vol 34 (27) ◽  
pp. 1950218
Author(s):  
S. C. Ulhoa ◽  
F. L. Carneiro

In this paper, the galactic rotation curve is analyzed as an effect of an accelerated reference frame. Such a rotation curve was the first evidence for the so-called dark matter. We show another possibility for this experimental data: non-inertial reference frame can fit the experimental curve. We also show that general relativity is not enough to completely explain that which encouraged alternatives paths such as the MOND approach. The accelerated reference frames hypothesis is well-suited to deal with the rotation curve of galaxies and perhaps has some role to play concerning other evidences for dark matter.

Author(s):  
Sergio C. Ulhoa ◽  
Fernando L. Carneiro

In this article the galactic rotation curve is analyzed as an effect of an accelerated reference frame. This phenomenon is the strongest evidence for the so called dark matter. We show that a non-inertial reference frame could explain the experimental data. We also show that general relativity is not enough to complete explain that which encouraged alternatives paths such as the MOND approach. Considering the effect of dark matter as a realization of accelerated reference frames is a simple but powerful hypothesis.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
G. O. Ludwig

AbstractHistorically, the existence of dark matter has been postulated to resolve discrepancies between astrophysical observations and accepted theories of gravity. In particular, the measured rotation curve of galaxies provided much experimental support to the dark matter concept. However, most theories used to explain the rotation curve have been restricted to the Newtonian potential framework, disregarding the general relativistic corrections associated with mass currents. In this paper it is shown that the gravitomagnetic field produced by the currents modifies the galactic rotation curve, notably at large distances. The coupling between the Newtonian potential and the gravitomagnetic flux function results in a nonlinear differential equation that relates the rotation velocity to the mass density. The solution of this equation reproduces the galactic rotation curve without recourse to obscure dark matter components, as exemplified by three characteristic cases. A bi-dimensional model is developed that allows to estimate the total mass, the central mass density, and the overall shape of the galaxies, while fitting the measured luminosity and rotation curves. The effects attributed to dark matter can be simply explained by the gravitomagnetic field produced by the mass currents.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944022 ◽  
Author(s):  
Philip D. Mannheim

We discuss arguments both in favor of and against dark matter. With the repeated failure of experiment to date to detect dark matter we discuss what could be done instead, and to this end look for clues in the data themselves. We identify various regularities in galactic rotation curve data that correlate the total gravitational potential with luminous matter rather than dark matter. We identify a contribution to galactic rotation curves coming from the rest of the visible universe, and suggest that dark matter is just an attempt to describe this global effect in terms of standard local Newtonian gravity within galaxies. Thus the missing mass is not missing at all — it has been hiding in plain sight all along as the rest of the visible mass in the universe.


2016 ◽  
Vol 25 (12) ◽  
pp. 1644017 ◽  
Author(s):  
F. I. Cooperstock

While general relativity (GR) is our premier theory of gravity, galactic dynamics from the outset has been studied with Newtonian gravity (NG), guided by the long-held belief in the idea of the “Newtonian-limit” of GR. This maintains that when the gravitational field is weak and the velocities are nonrelativistic, NG is the appropriate theory, apart from small corrections at best (such as in GPS tracking). However, there are simple examples of phenomena where there is no NG counterpart. We present a particularly simple new example of the stark difference that NG and weak-field GR exhibit for a modified van Stockum source, which speaks to the flat galactic rotation curve problem. We note that the linear GR compatibility equation in the literature is incomplete. Its completion is vital for our case, leading to a stark contrast between GR and NG for totally flat van Stockum rotation curves.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

A generalized and unifying viewpoint to both general relativity and quantum mechanics and information is investigated. It may be described as a generaliztion of the concept of reference frame from mechanics to thermodynamics, or from a reference frame linked to an element of a system, and thus, within it, to another reference frame linked to the whole of the system or to any of other similar systems, and thus, out of it. Furthermore, the former is the viewpoint of general relativity, the latter is that of quantum mechanics and information.Ciclicity in the manner of Nicolas Cusanus (Nicolas of Cusa) is complemented as a fundamental and definitive property of any totality, e.g. physically, that of the universe. It has to contain its externality within it somehow being namely the totality. This implies a seemingly paradoxical (in fact, only to common sense rather logically and mathematically) viewpoint for the universe to be repesented within it as each one quant of action according to the fundamental Planck constant.That approach implies the unification of gravity and entanglement correspondiing to the former or latter class of reference frames. An invariance, more general than Einstein's general covariance is to be involved as to both classes of reference frames unifying them. Its essence is the unification of the discrete and cotnitinuous (smooth). That idea underlies implicitly quantum mechanics for Bohr's principle that it study the system of quantum microscopic entities and the macroscopic apparatus desribed uniformly by the smmoth equations of classical physics.e


2011 ◽  
Vol 37 (4) ◽  
pp. 254-266 ◽  
Author(s):  
A. S. Stepanishchev ◽  
V. V. Bobylev

1996 ◽  
Vol 173 ◽  
pp. 175-176
Author(s):  
K.C. Freeman

From their rotation curves, most spiral galaxies appear to have massive dark coronas. The inferred masses of these dark coronas are typically 5 to 10 times the mass of the underlying stellar component. I will review the evidence that our Galaxy also has a dark corona. Our position in the galactic disk makes it difficult to measure the galactic rotation curve beyond about 20 kpc from the galactic center. However it does allow several other indicators of the total galactic mass out to very large distances. It seems clear that the Galaxy does indeed have a massive dark corona. The data indicate that the enclosed mass within radius R increases like M(R) ≈ R(kpc) × 1010M⊙, out to a radius of more than 100 kpc. The total galactic mass is at least 12 × 1011M⊙.


2018 ◽  
Vol 27 (02) ◽  
pp. 1850007 ◽  
Author(s):  
Christian G. Böhmer ◽  
Nicola Tamanini ◽  
Matthew Wright

We consider a modification of General Relativity motivated by the treatment of anisotropies in Continuum Mechanics. The Newtonian limit of the theory is formulated and applied to galactic rotation curves. By assuming that the additional structure of spacetime behaves like a Newtonian gravitational potential for small deviations from isotropy, we are able to recover the Navarro–Frenk–White profile of dark matter halos by a suitable identification of constants. We consider the Burkert profile in the context of our model and also discuss rotation curves more generally.


1983 ◽  
Vol 274 ◽  
pp. L61 ◽  
Author(s):  
S. E. Schneider ◽  
Y. Terzian

Sign in / Sign up

Export Citation Format

Share Document