Tsallis holographic dark energy in Bianchi type-III spacetime with scalar fields

2019 ◽  
Vol 34 (37) ◽  
pp. 1950310 ◽  
Author(s):  
Murat Korunur

In this paper, we study one of the new dark energy models named Tsallis holographic dark energy (THDE) model considering the Bianchi type-III spacetime model. Considering deceleration parameter, transition from deceleration to acceleration phase happens at [Formula: see text]. The equation of state (EoS) parameter has been found using the Granda–Oliveros (GO) scale. It is found that for [Formula: see text] values, EoS parameter behaves like the quintessence era; for [Formula: see text], EoS parameter behaves like the phantom dark energy and approaches [Formula: see text]CDM model at late-time cosmic acceleration phase. Also, we reconstructed a correspondence between THDE model and some well-known scalar fields, such as tachyon, quintessence and [Formula: see text]-essence. In addition, we evaluated equation of state parameter, kinetic energy and scalar potential versus time.

2014 ◽  
Vol 23 (10) ◽  
pp. 1450081 ◽  
Author(s):  
A. Khodam-Mohammadi ◽  
E. Karimkhani ◽  
A. Sheykhi

We investigate the interacting holographic dark energy (HDE) with Granda–Oliveros (GO) infrared (IR)-cutoff in the framework of Brans–Dicke (BD) cosmology. We obtain the equation of state (EoS) parameter of HDE, wD, the effective EoS parameter w eff , the deceleration parameter q and the squared of sound speed [Formula: see text] in a flat Friedmann–Robertson–Walker (FRW) universe. We show that at late-time the cosmic coincidence problem can be alleviated. Also we show that for noninteracting case, HDE can give a unified dark matter–dark energy (DM–DE) profile in BD cosmology, except that it cannot solve the coincidence problem in the future. By studying the EoS parameter, we see that the phantom divide may be crossed. Using the latest observational data, we calculate the best values of the parameters for interacting HDE in BD framework. Computing the deceleration parameter implies that the transition from deceleration to the acceleration phase occurred for redshift z ≥ 0.5. Finally, we investigate the sound stability of the model, and find that HDE with Granda–Oliveros (GO)-cutoff in the framework of BD cosmology can lead to a stable DE-dominated universe favored by observations, provided we take β = 0.44 and b2 < 0.35. This is in contrast to HDE model in Einstein gravity which does not lead to a stable DE-dominated universe.


Author(s):  
Gargee Chakraborty ◽  
Surajit Chattopadhyay ◽  
Ertan Güdekli ◽  
Irina Radinschi

Motivated by the work of Saridakis (Phys. Rev. D 102, 123525 (2020)), the present study reports the cosmological consequences of Barrow holographic dark energy (HDE) and its thermodynamics. Literatures demonstrate that Dark Energy (DE) may result from electroweak symmetry breaking that triggers a phase transition from early inflation to late time acceleration. In the present study, we incorporated viscosity in the Barrow HDE. A reconstruction scheme is presented for the parameters associated with Barrow holographic dark energy under the purview of viscous cosmology. Equation of state (EoS) parameter is reconstructed in this scenario and quintessence behaviour is observed. Considering BarrowHDE as a specific case ofNojiri-Odintsov (NO) HDE, we have observed quintom behaviour of the EoS parameter and for some values of n the EoS has been observed to be very close to &minus;1 for the current universe. The generalised second law of thermodynamics has come out to be valid in all the scenarios under consideration. Physical viability of considering Barrow HDE as a specific case of NO HDE is demonstrated in this study.


2020 ◽  
Vol 17 (04) ◽  
pp. 2050056
Author(s):  
Sunil Kumar Tripathy ◽  
Subingya Pandey ◽  
Alaka Priyadarsini Sendha ◽  
Dipanjali Behera

A bouncing scenario is studied in the framework of generalized Brans–Dicke theory. In order to have a dark energy (DE) driven late time cosmic acceleration, we have considered a unified dark fluid simulated by a linear equation of state (EoS). The evolutionary behavior of the DE equation of parameter derived from the unified dark fluid has been discussed. The effect of the bouncing scale factor on the Brans–Dicke parameter, self-interacting potential and the Brans–Dicke scalar field is investigated.


2016 ◽  
Vol 25 (12) ◽  
pp. 1630031 ◽  
Author(s):  
M. Sami ◽  
R. Myrzakulov

We briefly review the problems and prospects of the standard lore of dark energy. We have shown that scalar fields, in principle, cannot address the cosmological constant problem. Indeed, a fundamental scalar field is faced with a similar problem dubbed naturalness. In order to keep the discussion pedagogical, aimed at a wider audience, we have avoided technical complications in several places and resorted to heuristic arguments based on physical perceptions. We presented underlying ideas of modified theories based upon chameleon mechanism and Vainshtein screening. We have given a lucid illustration of recently investigated ghost-free nonlinear massive gravity. Again, we have sacrificed rigor and confined to the basic ideas that led to the formulation of the theory. The review ends with a brief discussion on the difficulties of the theory applied to cosmology.


2014 ◽  
Vol 92 (4) ◽  
pp. 295-301 ◽  
Author(s):  
K.L. Mahanta ◽  
A.K. Biswal ◽  
P.K. Sahoo

We have constructed dark energy cosmological models in an anisotropic Bianchi type-III space–time with a variable equation of state (EoS) parameter ω in Barber’s (Gen. Relativ. Gravitation, 14, 117, 1982) second self-creation theory of gravitation. The models are obtained using the special law of variation of Hubble’s parameter that yields a constant value of the deceleration parameter. In the two different models that we have obtained, the EoS parameter ω for dark energy is found to be time dependent. In one model the value of ω is in good agreement with the recent observations of type Ia supernovae (SNe Ia) data, SNe Ia data with cosmic microwave background radiation anisotropy and galaxy clustering statistics. Further we have discussed the well-known astrophysical phenomena, namely, the Hubble parameter H(z), luminosity distance dL, proper distance d(z), distance modulus μ(z), and look-back time with red shift. The expression for jerk parameter and statefinder parameters are also derived.


2018 ◽  
Vol 15 (04) ◽  
pp. 1850067 ◽  
Author(s):  
Shamaila Rani ◽  
Abdul Jawad

We consider the recently proposed higher derivative torsion corrected modified teleparallel gravity and holographic dark energy (HDE) models. We apply the correspondence scheme to construct models in underlying scenario using various scale factor forms. We investigate the reconstructed functions through equation of state (EoS) parameter. It is demonstrated that the EoS parameter provides quintom-like nature of the Universe in most of the cases, i.e. it drives the Universe from vacuum dark energy era toward phantom era of the Universe by crossing the phantom divide line. We also demonstrate that the consistency with the observational data can be achieved.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 562
Author(s):  
Gargee Chakraborty ◽  
Surajit Chattopadhyay ◽  
Ertan Güdekli ◽  
Irina Radinschi

Motivated by the work of Saridakis (Phys. Rev. D102, 123525 (2020)), the present study reports the cosmological consequences of Barrow holographic dark energy (HDE) and its thermodynamics. The literature demonstrates that dark energy (DE) may result from electroweak symmetry breaking that triggers a phase transition from early inflation to late-time acceleration. In the present study, we incorporated viscosity in the Barrow HDE. A reconstruction scheme is presented for the parameters associated with Barrow holographic dark energy under the purview of viscous cosmology. The equation of state (EoS) parameter is reconstructed in this scenario and quintessence behaviour is observed. Considering Barrow HDE as a specific case of Nojiri–Odintsov (NO) HDE, we have observed quintom behaviour of the EoS parameter and for some values of n the EoS has been observed to be very close to −1 for the current universe. The generalised second law of thermodynamics has come out to be valid in all the scenarios under consideration. Physical viability of considering Barrow HDE as a specific case of NO HDE is demonstrated in this study. Finally, it has been observed that the model under consideration is very close to ΛCDM and cannot go beyond it.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
E. Aydiner ◽  
I. Basaran-Öz ◽  
T. Dereli ◽  
M. Sarisaman

AbstractIn this study, we propose an interacting model to explain the physical mechanism of the late time transition from matter-dominated era to the dark energy-dominated era of the Universe evolution and to obtain a scale factor a(t) representing two eras together. In the present model, we consider a minimal coupling of two scalar fields which correspond to the dark matter and dark energy interacting through a potential based on the FLRW framework. Analytical solution of this model leads to a new scale factor a(t) in the hybrid form $$a(t)=a_{0} (t/t_{0})^{\alpha } e^{ht/t_{0}}$$ a ( t ) = a 0 ( t / t 0 ) α e h t / t 0 . This peculiar result reveals that the scale factor behaving as $$a (t) \propto (t/t_{0})^{\alpha }$$ a ( t ) ∝ ( t / t 0 ) α in the range $$t/t_{0}\le t_{c}$$ t / t 0 ≤ t c corresponds to the matter-dominated era while $$a(t) \propto \exp (ht/t_{0})$$ a ( t ) ∝ exp ( h t / t 0 ) in the range $$t/t_{0}>t_{c}$$ t / t 0 > t c accounts for the dark energy-dominated era, respectively. Surprisingly, we explore that the transition from the power-law to the exponential expansion appears at the crossover time $$t_{0} \approx 9.8$$ t 0 ≈ 9.8 Gyear. We attain that the presented model leads to precisely correct results so that the crossover time $$t_{0}$$ t 0 and $$\alpha $$ α are completely consistent with the exact solution of the FLRW and re-scaled Hubble parameter $$H_{0}$$ H 0 lies within the observed limits given by Planck, CMB and SNIa data (or other combinations), which lead to consistent cosmological quantities such as the dimensionless Hubble parameter h, deceleration parameter q, jerk parameter j and EoS parameter w. We also discuss time dependent behavior of the dark energy and dark matter to show their roles on the time evolution of the universe. Additionally, we observe that all main results completely depend on the structure of the interaction potential when the parameter values are tuned to satisfy the zero energy condition. Finally, we conclude that interactions in the dark sector may play an important role on the time evolution and provides a mechanism to explain the late time transition of the Universe.


Sign in / Sign up

Export Citation Format

Share Document