scholarly journals Resonance energy transfer at percolation transition

2020 ◽  
Vol 35 (03) ◽  
pp. 2040022
Author(s):  
P. P. Abrantes ◽  
D. Szilard ◽  
F. S. S. Rosa ◽  
C. Farina

We compute the resonance energy transfer (RET) in a system composed of two quantum emitters near a host dielectric matrix in which metallic inclusions are inserted until the medium undergoes a dielectric-metal transition at percolation. We show that there is no peak in the RET rate at percolation, in contrast to what happens with the spontaneous emission rate of an emitter near the same critical medium. This result suggests that RET does not strongly correlate with the local density of states.

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3504
Author(s):  
Xin Miao ◽  
David J. Gosztola ◽  
Xuedan Ma ◽  
David Czaplewski ◽  
Liliana Stan ◽  
...  

The quenching of fluorescence (FL) at the vicinity of conductive surfaces and, in particular, near a 2-D graphene layer has become an important biochemical sensing tool. The quenching is attributed to fast non-radiative energy transfer between a chromophore (here, a Quantum Dot, QD) and the lossy graphene layer. Increased emission rate is also observed when the QD is coupled to a resonator. Here, we combine the two effects in order to control the emission lifetime of the QD. In our case, the resonator was defined by an array of nano-holes in the oxide substrate underneath a graphene surface guide. At resonance, the surface mode of the emitted radiation is concentrated at the nano-holes. Thus, the radiation of QD at or near the holes is spatially correlated through the hole-array’s symmetry. We demonstrated an emission rate change by more than 50% as the sample was azimuthally rotated with respect to the polarization of the excitation laser. In addition to an electrical control, such control over the emission lifetime could be used to control Resonance Energy Transfer (RET) between two chromophores.


2019 ◽  
Vol 1 (6) ◽  
pp. 2454-2461 ◽  
Author(s):  
Xavier Zambrana-Puyalto ◽  
Nicolò Maccaferri ◽  
Paolo Ponzellini ◽  
Giorgia Giovannini ◽  
Francesco De Angelis ◽  
...  

A site-selective functionalization method in a plasmonic nanopore demonstrates how it is possible to modulate FRET at the nanoscale level.


2003 ◽  
Vol 773 ◽  
Author(s):  
Aaron R. Clapp ◽  
Igor L. Medintz ◽  
J. Matthew Mauro ◽  
Hedi Mattoussi

AbstractLuminescent CdSe-ZnS core-shell quantum dot (QD) bioconjugates were used as energy donors in fluorescent resonance energy transfer (FRET) binding assays. The QDs were coated with saturating amounts of genetically engineered maltose binding protein (MBP) using a noncovalent immobilization process, and Cy3 organic dyes covalently attached at a specific sequence to MBP were used as energy acceptor molecules. Energy transfer efficiency was measured as a function of the MBP-Cy3/QD molar ratio for two different donor fluorescence emissions (different QD core sizes). Apparent donor-acceptor distances were determined from these FRET studies, and the measured distances are consistent with QD-protein conjugate dimensions previously determined from structural studies.


2020 ◽  
Author(s):  
Lucas S. Ryan ◽  
Jeni Gerberich ◽  
Uroob Haris ◽  
ralph mason ◽  
Alexander Lippert

<p>Regulation of physiological pH is integral for proper whole-body and cellular function, and disruptions in pH homeostasis can be both a cause and effect of disease. In light of this, many methods have been developed to monitor pH in cells and animals. In this study, we report a chemiluminescence resonance energy transfer (CRET) probe Ratio-pHCL-1, comprised of an acrylamide 1,2-dioxetane chemiluminescent scaffold with an appended pH-sensitive carbofluorescein fluorophore. The probe provides an accurate measurement of pH between 6.8-8.4, making it viable tool for measuring pH in biological systems. Further, its ratiometric output is independent of confounding variables. Quantification of pH can be accomplished both using common fluorimetry and advanced optical imaging methods. Using an IVIS Spectrum, pH can be quantified through tissue with Ratio-pHCL-1, which has been shown in vitro and precisely calibrated in sacrificed mouse models. Initial studies showed that intraperitoneal injections of Ratio-pHCL-1 into sacrificed mice produce a photon flux of more than 10^10 photons per second, and showed a significant difference in ratio of emission intensities between pH 6.0, 7.0, and 8.0.</p> <b></b><i></i><u></u><sub></sub><sup></sup><br>


Sign in / Sign up

Export Citation Format

Share Document