scholarly journals Thermodynamics of the viscous f(T,B) gravity in the new agegraphic dark energy model

2020 ◽  
Vol 35 (20) ◽  
pp. 2050166 ◽  
Author(s):  
A. Pourbagher ◽  
Alireza Amani

In this paper, we first obtain the energy density by the approach of the new agegraphic dark energy model, and then the [Formula: see text] gravity model is studied as an alternative to the dark energy in a viscous fluid by flat-FRW background, in which [Formula: see text] and [Formula: see text] are torsion scalar and boundary term. The Friedmann equations will be obtained in the framework of modified teleparallel gravity by tetrad components. We consider that the universe dominates with components such as matter and dark energy by an interacting model. The Hubble parameter is parameterized by the power-law for the scale factor, and then we fit the corresponding Hubble parameter with observational data constraints. The variation of the equation of state (EoS) for dark energy is plotted as a function of the redshift parameter, and the accelerated expansion of the universe is explored. In what follows, the stability of the model is also studied on the base of the sound speed parameter. Finally, the generalized second law of thermodynamics is investigated by entropies of inside and on the boundary of the apparent horizon in thermodynamics equilibrium.

2021 ◽  
Vol 13 (3) ◽  
pp. 779-784
Author(s):  
P. Das ◽  
K. P. Singh

In this paper, we study the Polytropic Gas Dark Energy model and New Agegraphic Dark Energy model in the flat Friedmann Robertson Walker (FRW) Universe and establish a correspondence between them for the scalar fields. This correspondence allows reconstructing the potential of the Polytropic Gas scalar fields and dynamics of the scalar fields according to the evolutions of the New Agegraphic Dark Energy, which describes the accelerated expansion of the Universe.


2010 ◽  
Vol 19 (01) ◽  
pp. 21-35 ◽  
Author(s):  
LI ZHANG ◽  
JINGLEI CUI ◽  
JINGFEI ZHANG ◽  
XIN ZHANG

The statefinder diagnostic is a useful method for distinguishing different dark energy models. In this paper, we investigate the new agegraphic dark energy model with interaction between dark energy and matter component by using statefinder parameter pair {r, s} and study its cosmological evolution. We plot the trajectories of the new agegraphic dark energy model for different interaction cases in the statefinder plane. As a result, the influence of the interaction on the evolution of the universe is shown in the statefinder diagrams.


2008 ◽  
Vol 23 (17n20) ◽  
pp. 1366-1371 ◽  
Author(s):  
H. W. LEE ◽  
K. Y. KIM ◽  
Y. S. MYUNG

We investigate the cosmological evolution of the new-agegraphic dark energy model which was recently proposed to explain the dark energy-dominated universe. For this purpose, we derived differential equations for density parameters and solved them numerically. We found that there exist a critical value for undetermined parameter of new-agegraphic density to obtain a stable and accessible evolution in the far past. Furthermore, this parameter seems to be fixed as the critical value for consistence.


2020 ◽  
Vol 35 (15) ◽  
pp. 2050126
Author(s):  
Abdul Jawad ◽  
Saba Qummer ◽  
Shamaila Rani ◽  
M. Younas

By assuming generalized nonlinear and linear interaction term between dark matter and dark energy, we investigate the cosmic accelerated expansion of the universe. For this reason, we suppose a flat fractal universe platform as well as Tsallis holographic dark energy model. The Hubble horizon is being adopted as an infrared cutoff and extracted different cosmological parameters as well as plane. It is observed that equation-of-state parameter exhibits the quintom-like nature while ([Formula: see text]–[Formula: see text]) lies in thawing and freezing regions for different parametric values for both the cases. Furthermore, the squared sound speed shows stable behavior for nonlinear interaction term but shows the partially stable behavior for linear term. For both cases, the deceleration parameter leads to the accelerated phase of the universe and the consequences are comparable with observational data. The results for [Formula: see text]–[Formula: see text] plane, leads to the quintessence and phantom region of the universe for nonlinear case while this plane represents the Chaplygin gas behavior for linear term. The [Formula: see text] diagnostic also shows the satisfying results.


2014 ◽  
Vol 92 (2) ◽  
pp. 168-172 ◽  
Author(s):  
V. Fayaz ◽  
H. Hossienkhani ◽  
A. Aghamohammadi ◽  
M. Amirabadi

A ghost dark energy model has been recently put forward to explain the current accelerated expansion of the universe. In this model, we develop the general scheme for modified f(R) gravity reconstruction from realistic anisotropic Bianchi type I cosmology. Power-law volumetric expansion is used to obtain exact solutions of the field equations. We discuss the physical behavior of the solutions and anisotropy behavior of the fluid, the expansion parameter, and the model in future evolution of the universe. We reconstruct corresponding f(R) gravities and obtain the equation of state parameter. We show that the corresponding f(R) gravity of the ghost dark energy model can behave like phantom or quintessence of the selected models that describe accelerated expansion of the universe.


2020 ◽  
Vol 35 (06) ◽  
pp. 2050027 ◽  
Author(s):  
Shikha Srivastava ◽  
Vipin Chandra Dubey ◽  
Umesh Kumar Sharma

A new class of dark energy model, known as “Tsallis agegraphic dark energy (TADE),” has been proposed using the holographic principle and Tsallis nonextensive entropy (Mod. Phys. Lett. A, 2019), considering the conformal time as well as the age of the Universe as IR cutoffs in flat Universe. The trajectories for evolution of statefinder parameters in [Formula: see text], [Formula: see text], [Formula: see text] and the [Formula: see text] planes are plotted for the TADE 1 and TADE 2 models for the value of the Tsallis parameter [Formula: see text], and taking the TADE energy density parameter [Formula: see text], according to the Planck 2018 results VI — [Formula: see text]CDM observational data without interaction.


Sign in / Sign up

Export Citation Format

Share Document