scholarly journals Are models of local hidden variables for the singlet polarization state necessarily constrained by the Bell inequality?

2020 ◽  
Vol 35 (28) ◽  
pp. 2050229
Author(s):  
David H. Oaknin

The Bell inequality is thought to be a common constraint shared by all models of local hidden variables that aim to describe the entangled states of two qubits. Since the inequality is violated by the quantum mechanical description of these states, it purportedly allows distinguishing in an experimentally testable way the predictions of quantum mechanics from those of models of local hidden variables and, ultimately, ruling the latter out. In this paper, we show, however, that the models of local hidden variables constrained by the Bell inequality all share a subtle, though crucial, feature that is not required by fundamental physical principles and, hence, it might not be fulfilled in the actual experimental setup that tests the inequality. Indeed, the disputed feature neither can be properly implemented within the standard framework of quantum mechanics and it is even at odds with the fundamental principle of relativity. Namely, the proof of the inequality requires the existence of a preferred absolute frame of reference (supposedly provided by the lab) with respect to which the hidden properties of the entangled particles and the orientations of each one of the measurement devices that test them can be independently defined through a long sequence of realizations of the experiment. We notice, however, that while the relative orientation between the two measurement devices is a properly defined physical magnitude in every single realization of the experiment, their global rigid orientation with respect to a lab frame is a spurious gauge degree of freedom. Following this observation, we were able to explicitly build a model of local hidden variables that does not share the disputed feature and, hence, it is able to reproduce the predictions of quantum mechanics for the entangled states of two qubits.

2010 ◽  
Vol 09 (04) ◽  
pp. 395-402 ◽  
Author(s):  
D. K. FERRY

From the early days of quantum mechanics, there has been a discussion on the concept of reality, exemplified by the EPR paradox. To many, the idea of the paradox and the possibility of local hidden variables was dismissed by the Bell inequality. Yet, there remains considerable evidence that this inequality can be violated even by classical systems, so that experiments showing quantum behavior and the violation of the inequality must be questioned. Here, we demonstrate that classical optical polarization experiments can be shown to violate the Bell inequality. Hence, such experiments cannot be used to distinguish between classical and quantum theories.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 632
Author(s):  
Andrei Khrennikov

This note is a part of my effort to rid quantum mechanics (QM) nonlocality. Quantum nonlocality is a two faced Janus: one face is a genuine quantum mechanical nonlocality (defined by the Lüders’ projection postulate). Another face is the nonlocality of the hidden variables model that was invented by Bell. This paper is devoted the deconstruction of the latter. The main casualty of Bell’s model is that it straightforwardly contradicts Heisenberg’s uncertainty and Bohr’s complementarity principles generally. Thus, we do not criticize the derivation or interpretation of the Bell inequality (as was done by numerous authors). Our critique is directed against the model as such. The original Einstein-Podolsky-Rosen (EPR) argument assumed the Heisenberg’s principle without questioning its validity. Hence, the arguments of EPR and Bell differ crucially, and it is necessary to establish the physical ground of the aforementioned principles. This is the quantum postulate: the existence of an indivisible quantum of action given by the Planck constant. Bell’s approach with hidden variables implicitly implies rejection of the quantum postulate, since the latter is the basis of the reference principles.


1978 ◽  
Vol 43 (1) ◽  
pp. 65-72 ◽  
Author(s):  
A. Baracca ◽  
A. Cornia ◽  
R. Livi ◽  
S. Ruffo

2020 ◽  
Author(s):  
Vasil Dinev Penchev

Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a quantum computer. The physical processes represent computations of the quantum computer. Quantum information is the real fundament of the world. The conception of quantum computer unifies physics and mathematics and thus the material and the ideal world. Quantum computer is a non-Turing machine in principle. Any quantum computing can be interpreted as an infinite classical computational process of a Turing machine. Quantum computer introduces the notion of “actually infinite computational process”. The discussed hypothesis is consistent with all quantum mechanics. The conclusions address a form of neo-Pythagoreanism: Unifying the mathematical and physical, quantum computer is situated in an intermediate domain of their mutual transformations.


1949 ◽  
Vol 45 (2) ◽  
pp. 263-274 ◽  
Author(s):  
H. S. Green

The search for a theory of the elementary particles which is founded on the well-established principles of quantum mechanics and conforms at the same time with the requirements of the principle of relativity has, in recent years, taken several divergent directions. On the one hand, the second quantization of wave fields derived from a Lagrangian by a variational procedure(1) has succeeded in accounting for the existence and most of the properties of the electron, the photon, and the meson. On the other hand, many generalizations of the Dirac wave equation of the electron(2) have been attempted, with applications to the meson(3) and the proton(4). Heisenberg(5) has considered the much more difficult problem of the interaction between different particles, and has found that the key to the situation is the so-called ‘scattering matrix’, which is nothing other than a limiting form of the relativistic density matrix, as defined in § 2 of this paper. It seems probable that the relativistic density matrix ρ; or statistical operator, as it may be called without reference to representation, will play an important part in relativistic quantum mechanics in the future. It satisfies the same equation as the wave function, but differs from it in being a real linear operator, or a dynamical variable, in the terminology of Dirac.


Author(s):  
Jeffrey A. Barrett

Moving to more subtle experiments, we consider how the standard formulation of quantum mechanics predicts and explains interference phenomena. Tracking the conditions under which one observes interference phenomena leads to the notion of quantum decoherence. We see why one must sharply distinguish between collapse phenomena and decoherence phenomena on the standard formulation of quantum mechanics. While collapses explain determinate measurement records, environmental decoherence just produces more complex, entangled states where the physical systems involved lack ordinary physical properties. We characterize the quantum-mechanical wave function as both an element of a Hilbert space and a complex-valued function over a configuration space. We also discuss how the wave function is interpreted in the standard theory.


Sign in / Sign up

Export Citation Format

Share Document