scholarly journals CANONICAL TREATMENT OF TWO-DIMENSIONAL GRAVITY AS AN ANOMALOUS GAUGE THEORY

1993 ◽  
Vol 08 (23) ◽  
pp. 2147-2154 ◽  
Author(s):  
T. FUJIWARA ◽  
T. TABEI ◽  
Y. IGARASHI ◽  
K. MAEDA ◽  
J. KUBO

The extended phase space method of Batalin, Fradkin and Vilkovisky is applied to formulate two-dimensional gravity in a general class of gauges. A BRST formulation of the light-cone gauge is presented to reveal the relationship between the BRST symmetry and the origin of SL (2, ℝ) current algebra. From the same principle we derive the conformal gauge action suggested by David, Distler and Kawai.

1992 ◽  
Vol 07 (35) ◽  
pp. 3291-3302 ◽  
Author(s):  
KIYONORI YAMADA

We show that the two-dimensional gravity coupled to c=−2 matter field in Polyakov’s light-cone gauge has a twisted N=2 superconformal algebra. We also show that the BRST cohomology in the light-cone gauge actually coincides with that in the conformal gauge. Based on this observation the relations between the topological algebras are discussed.


1990 ◽  
Vol 05 (16) ◽  
pp. 1251-1258 ◽  
Author(s):  
NOUREDDINE MOHAMMEDI

We find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL (2, R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2+1 dimensional gravity. We present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given.


1989 ◽  
Vol 04 (05) ◽  
pp. 419-425 ◽  
Author(s):  
R. FLOREANINI

Semiclassical Einstein equations for two-dimensional gravity are investigated in lightcone gauge and their group of invariance is discussed. One finds differences with respect to the corresponding results in conformal gauge.


1991 ◽  
Vol 06 (26) ◽  
pp. 4639-4654 ◽  
Author(s):  
YOSHIAKI TANII

The BRST approach to two-dimensional gravity coupled to conformal field theories is discussed. The ordinary BRST symmetry acts only on the left-moving sector of the theory. It is found that there exists a BRST-like symmetry also in the right-moving sector. The conserved charge of this new symmetry is found to be nilpotent. This symmetry is a result of a redundancy of the parametrization of the gravitational field in terms of a scalar field. We propose that the physical states of the theory should belong to the cohomology of this BRST-like charge to eliminate the redundancy. It is also discussed how to derive the BRST charge from the action and the transformation laws of fields.


Mathematics ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 180 ◽  
Author(s):  
Laure Gouba

The system of a two-dimensional damped harmonic oscillator is revisited in the extended phase space. It is an old problem that has already been addressed by many authors that we present here with some fresh points of view and carry on a whole discussion. We show that the system is singular. The classical Hamiltonian is proportional to the first-class constraint. We pursue with the Dirac’s canonical quantization procedure by fixing the gauge and provide a reduced phase space description of the system. As a result, the quantum system is simply modeled by the original quantum Hamiltonian.


1991 ◽  
Vol 06 (13) ◽  
pp. 2331-2346 ◽  
Author(s):  
KAI-WEN XU ◽  
CHUAN-JIE ZHU

We study the symmetry of two-dimensional gravity by choosing a generic gauge. A local action is derived which reduces to either the Liouville action or the Polyakov one by reducing to the conformal or light-cone gauge respectively. The theory is also solved classically. We show that an SL (2, R) covariant gauge can be chosen so that the two-dimensional gravity has a manifest Virasoro and the sl (2, R)-current symmetry discovered by Polyakov. The symmetry algebra of the light-cone gauge is shown to be isomorphic to the Beltrami algebra. By using the contour integration method we construct the BRST charge QB corresponding to this algebra following the Fradkin-Vilkovisky procedure and prove that the nilpotence of QB requires c=28 and α0=1. We give a simple interpretation of these conditions.


2002 ◽  
Vol 17 (11) ◽  
pp. 1491-1502 ◽  
Author(s):  
MITSUO ABE ◽  
NOBORU NAKANISHI

It is shown that the BRS (= Becchi–Rouet–Stora)-formulated two-dimensional BF theory in the light-cone gauge (coupled with chiral Dirac fields) is solved very easily in the Heisenberg picture. The structure of the exact solution is very similar to that of the BRS-formulated two-dimensional quantum gravity in the conformal gauge. In particular, the BRS Noether charge has anomaly. Based on this fact, a criticism is made on the reasoning of Kato and Ogawa, who derived the critical dimension D=26 of string theory on the basis of the anomaly of the BRS Noether charge. By adding the [Formula: see text] term to the BF-theory Lagrangian density, the exact solution to the two-dimensional Yang–Mills theory is also obtained.


1992 ◽  
Vol 07 (40) ◽  
pp. 3777-3782 ◽  
Author(s):  
FIORENZO BASTIANELLI

Quantization of two-dimensional chiral matter coupled to gravity induces an effective action for the zweibein field which is both Weyl and Lorentz anomalous. Recently, the quantization of this induced action has been analyzed in the light-cone gauge as well as in the conformal gauge. An apparent mismatch between the results obtained in the two gauges is analyzed and resolved by properly treating the Lorentz field as a chiral boson.


1993 ◽  
Vol 08 (08) ◽  
pp. 697-710 ◽  
Author(s):  
X. SHEN

Recently, models of two-dimensional dilaton gravity have been shown to admit classical black hole solutions that exhibit Hawking radiation at the semiclassical level. These classical and semiclassical analyzes have been performed in conformal gauge. We show in this paper that a similar analysis in the light-cone gauge leads to the same results. Moreover, quantization of matter fields in light-cone gauge can be naturally extended to include quantizing the metric field à la KPZ. We argue that this may provide a new framework to address many issues associated to black hole physics.


2000 ◽  
Vol 78 (11) ◽  
pp. 959-967 ◽  
Author(s):  
M Grigorescu

The energy and time variables of the elementary classical dynamical systems are described geometrically, as canonically conjugate coordinates of an extended phase-space. It is shown that the Galilei action of the inertial equivalence group on this space is canonical, but not Hamiltonian equivariant. Although it has no effect at a classical level, the lack of equivariance makes the Galilei action inconsistent with the canonical quantization. A Hamiltonian equivariant action can be obtained by assuming that the inertial parameter in the extended phase-space is quasi-isotropic. This condition leads naturally to the Lorentz transformations between moving frames as a particular case of symplectic transformations. The limit speed appears as a constant factor relating the two additional canonical coordinates to the energy and time. Its value is identified with the speed of light by using the relationship between the electromagnetic potentials and the symplectic form of the extended phase-space. PACS Nos.: 45.20Jj, 11.30Cp, 03.50De


Sign in / Sign up

Export Citation Format

Share Document