scholarly journals LOW ENERGY DYNAMICS OF MONOPOLES IN N=2 SYM WITH MATTER

1996 ◽  
Vol 11 (05) ◽  
pp. 367-379 ◽  
Author(s):  
MARTIN CEDERWALL ◽  
GABRIELE FERRETTI ◽  
BENGT E.W. NILSSON ◽  
PER SALOMONSON

We derive, for N=2 super-Yang-Mills with gauge group SU(2) and massless matter, the supersymmetric quantum mechanical models describing the time evolution of multimonopole configurations in the low energy approximation. This is a first step towards identifying the solitonic states mapped to fundamental excitations by duality in the model with four hypermultiplets in the fundamental representation.

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Sergei M. Kuzenko

Abstract We present $$ \mathcal{N} $$ N = 2 superconformal U(1) duality-invariant models for an Abelian vector multiplet coupled to conformal supergravity. In a Minkowski background, such a nonlinear theory is expected to describe (the planar part of) the low-energy effective action for the $$ \mathcal{N} $$ N = 4 SU(N) super-Yang-Mills (SYM) theory on its Coulomb branch where (i) the gauge group SU(N) is spontaneously broken to SU(N − 1) × U(1); and (ii) the dynamics is captured by a single $$ \mathcal{N} $$ N = 2 vector multiplet associated with the U(1) factor of the unbroken group. Additionally, a local U(1) duality-invariant action generating the $$ \mathcal{N} $$ N = 2 super-Weyl anomaly is proposed. By providing a new derivation of the recently constructed U(1) duality-invariant $$ \mathcal{N} $$ N = 1 superconformal electrodynamics, we introduce its SL(2, ℝ) duality-invariant coupling to the dilaton-axion multiplet.


2009 ◽  
Vol 24 (03) ◽  
pp. 193-211 ◽  
Author(s):  
ABHISHEK AGARWAL

Mass deformations of supersymmetric Yang–Mills theories in three spacetime dimensions are considered. The gluons of the theories are made massive by the inclusion of a nonlocal gauge and Poincaré invariant mass term due to Alexanian and Nair, while the matter fields are given standard Gaussian mass-terms. It is shown that the dimensional reduction of such mass-deformed gauge theories defined on R3 or R × T2 produces matrix quantum mechanics with massive spectra. In particular, all known massive matrix quantum mechanical models obtained by the deformations of dimensional reductions of minimal super Yang–Mills theories in diverse dimensions are shown also to arise from the dimensional reductions of appropriate massive Yang–Mills theories in three spacetime dimensions. Explicit formulas for the gauge theory actions are provided.


2020 ◽  
pp. 2150007
Author(s):  
Satoshi Ohya

Motivated by the Nahm’s construction, in this paper, we present a systematic construction of Schrödinger Hamiltonians for a spin-1/2 particle where the Berry connection in the ground-state sector becomes the Bogomolny–Prasad–Sommerfield (BPS) monopole of SU(2) Yang–Mills–Higgs theory. Our construction enjoys a single arbitrary monotonic function, thereby creating infinitely many quantum-mechanical models that simulate the BPS monopole in the space of model parameters.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Andrey Yu. Kotov ◽  
Daniel Nogradi ◽  
Kalman K. Szabo ◽  
Lorinc Szikszai

Abstract In previous work, [arXiv:1905.01909], we have calculated the mϱ/fπ ratio in the chiral and continuum limit for SU(3) gauge theory coupled to Nf = 2, 3, 4, 5, 6 fermions in the fundamental representation. The main result was that this ratio displays no statistically significant Nf-dependence. In the present work we continue the study of the Nf-dependence by extending the simulations to Nf = 7, 8, 9, 10. Along the way we also study in detail the Nf-dependence of finite volume effects on low energy observables and a particular translational symmetry breaking unphysical, lattice artefact phase specific to staggered fermions.


2007 ◽  
Vol 310 (2) ◽  
pp. e454-e456
Author(s):  
V.N. Glazkov ◽  
A.I. Smirnov ◽  
A. Kolezhuk ◽  
H. Tanaka ◽  
A. Oosawa

1999 ◽  
Vol 537 (1-3) ◽  
pp. 161-183 ◽  
Author(s):  
M. Chaichian ◽  
W.F. Chen ◽  
C. Montonen

2010 ◽  
Vol 25 (31) ◽  
pp. 5765-5785 ◽  
Author(s):  
GEORGE SAVVIDY

In the recently proposed generalization of the Yang–Mills theory, the group of gauge transformation gets essentially enlarged. This enlargement involves a mixture of the internal and space–time symmetries. The resulting group is an extension of the Poincaré group with infinitely many generators which carry internal and space–time indices. The matrix representations of the extended Poincaré generators are expressible in terms of Pauli–Lubanski vector in one case and in terms of its invariant derivative in another. In the later case the generators of the gauge group are transversal to the momentum and are projecting the non-Abelian tensor gauge fields into the transversal plane, keeping only their positively definite spacelike components.


Sign in / Sign up

Export Citation Format

Share Document