scholarly journals MASS DEFORMATIONS OF SUPER YANG–MILLS THEORIES IN D = 2 + 1, AND SUPER-MEMBRANES: A NOTE

2009 ◽  
Vol 24 (03) ◽  
pp. 193-211 ◽  
Author(s):  
ABHISHEK AGARWAL

Mass deformations of supersymmetric Yang–Mills theories in three spacetime dimensions are considered. The gluons of the theories are made massive by the inclusion of a nonlocal gauge and Poincaré invariant mass term due to Alexanian and Nair, while the matter fields are given standard Gaussian mass-terms. It is shown that the dimensional reduction of such mass-deformed gauge theories defined on R3 or R × T2 produces matrix quantum mechanics with massive spectra. In particular, all known massive matrix quantum mechanical models obtained by the deformations of dimensional reductions of minimal super Yang–Mills theories in diverse dimensions are shown also to arise from the dimensional reductions of appropriate massive Yang–Mills theories in three spacetime dimensions. Explicit formulas for the gauge theory actions are provided.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Max Hübner

Abstract M-theory on local G2-manifolds engineers 4d minimally supersymmetric gauge theories. We consider ALE-fibered G2-manifolds and study the 4d physics from the view point of a partially twisted 7d supersymmetric Yang-Mills theory and its Higgs bundle. Euclidean M2-brane instantons descend to non-perturbative effects of the 7d supersymmetric Yang-Mills theory, which are found to be in one to one correspondence with the instantons of a colored supersymmetric quantum mechanics. We compute the contributions of M2-brane instantons to the 4d superpotential in the effective 7d description via localization in the colored quantum mechanics. Further we consider non-split Higgs bundles and analyze their 4d spectrum.


2010 ◽  
Vol 25 (22) ◽  
pp. 4291-4300
Author(s):  
ROSY TEH ◽  
KHAI-MING WONG ◽  
PIN-WAI KOH

Monopole-instanton in topologically massive gauge theories in 2+1 dimensions with a Chern–Simons mass term have been studied by Pisarski some years ago. He investigated the SU(2) Yang–Mills–Higgs model with an additional Chern–Simons mass term in the action. Pisarski argued that there is a monopole-instanton solution that is regular everywhere, but found that it does not possess finite action. There were no exact or numerical solutions being presented by Pisarski. Hence it is our purpose to further investigate this solution in more detail. We obtained numerical regular solutions that smoothly interpolates between the behavior at small and large distances for different values of Chern–Simons term strength and for several fixed values of Higgs field strength. The monopole-instanton's action is real but infinite. The action vanishes for large Chern–Simons term only when the Higgs field expectation value vanishes.


2009 ◽  
Vol 06 (08) ◽  
pp. 1235-1252 ◽  
Author(s):  
JOSÉ F. CARIÑENA ◽  
JAVIER DE LUCAS

The theory of Lie systems has recently been applied to Quantum Mechanics and additionally some integrability conditions for Lie systems of differential equations have also recently been analyzed from a geometric perspective. In this paper we use both developments to obtain a geometric theory of integrability in Quantum Mechanics and we use it to provide a series of non-trivial integrable quantum mechanical models and to recover some known results from our unifying point of view.


1996 ◽  
Vol 11 (05) ◽  
pp. 367-379 ◽  
Author(s):  
MARTIN CEDERWALL ◽  
GABRIELE FERRETTI ◽  
BENGT E.W. NILSSON ◽  
PER SALOMONSON

We derive, for N=2 super-Yang-Mills with gauge group SU(2) and massless matter, the supersymmetric quantum mechanical models describing the time evolution of multimonopole configurations in the low energy approximation. This is a first step towards identifying the solitonic states mapped to fundamental excitations by duality in the model with four hypermultiplets in the fundamental representation.


2010 ◽  
Vol 19 (14) ◽  
pp. 2379-2384 ◽  
Author(s):  
SUDARSHAN ANANTH

Three of the four forces of Nature are described by quantum Yang–Mills theories with remarkable precision. The fourth force, gravity, is described classically by the Einstein–Hilbert theory. There appears to be an inherent incompatibility between quantum mechanics and the Einstein–Hilbert theory which prevents us from developing a consistent quantum theory of gravity. The Einstein–Hilbert theory is therefore believed to differ greatly from Yang–Mills theory (which does have a sensible quantum mechanical description). It is therefore very surprising that these two theories actually share close perturbative ties. This essay focuses on these ties between Yang–Mills theory and the Einstein–Hilbert theory. We discuss the origin of these ties and their implications for a quantum theory of gravity.


1991 ◽  
Vol 46 (8) ◽  
pp. 645-654 ◽  
Author(s):  
W. Drechsler

AbstractThe development of gauge theories is reviewed beginning with Weyl's theory of 1918 and with the changes introduced by London in the context of quantum mechanics. After a discussion of the Yang-Mills theory and Utiyama's work in the fifties the translation to the modern geometric formulation of gauge theories in terms of fiber bundles is presented


1997 ◽  
Vol 12 (03) ◽  
pp. 183-193 ◽  
Author(s):  
I. I. Kogan ◽  
R. J. Szabo ◽  
G. W. Semenoff

We discuss some properties of a supersymmetric matrix model that is the dimensional reduction of supersymmetric Yang–Mills theory in 10 dimensions and which has been recently argued to represent the short-distance structure of M-theory in the infinite momentum frame. We describe a reduced version of the matrix quantum mechanics and derive the Nicolai map of the simplified supersymmetric matrix model. We use this to argue that there are no phase transitions in the large-N limit, and hence that S-duality is preserved in the full 11-dimensional theory.


Open Physics ◽  
2009 ◽  
Vol 7 (4) ◽  
Author(s):  
Radu Constantinescu ◽  
Carmen Ionescu

AbstractThe paper presents some mechanical models of gauge theories, i.e. gauge fields transposed in a space with a finite number of degree of freedom. The main focus is on how a global symmetry as the BRST one could be transferred in this context. The mechanical Yang-Mills model modified by taking the ghost type variables into account will be considered as an example of nonlinear dynamical systems.


1985 ◽  
Vol 153 (3) ◽  
pp. 142-146 ◽  
Author(s):  
Reinhard Oehme ◽  
Klaus Sibold ◽  
Wolfhart Zimmermann

Sign in / Sign up

Export Citation Format

Share Document