scholarly journals MULTIPARTICLE THRESHOLD AMPLITUDES EXPONENTIATE IN ARBITRARY SCALAR THEORIES

1996 ◽  
Vol 11 (31) ◽  
pp. 2539-2546 ◽  
Author(s):  
M.V. LIBANOV

Threshold amplitudes are considered for n-particle production in arbitrary scalar theory. It is found that, like in Φ4, leading-n corrections to the tree level amplitudes, being summed over all loops, exponentiate. This result provides more evidence in favor of the conjecture on the exponential behavior of the multiparticle amplitudes.

2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Renjan Rajan John ◽  
Ryota Kojima ◽  
Sujoy Mahato

Abstract The story of positive geometry of massless scalar theories was pioneered in [1] in the context of bi-adjoint ϕ3 theories. Further study proposed that the positive geometry for a generic massless scalar theory with polynomial interaction is a class of polytopes called accordiohedra [2]. Tree-level planar scattering amplitudes of the theory can be obtained from a weighted sum of the canonical forms of the accordiohedra. In this paper, using results of the recent work [3], we show that in theories with polynomial interactions all the weights can be determined from the factorization property of the accordiohedron. We also extend the projective recursion relations introduced in [4, 5] to these theories. We then give a detailed analysis of how the recursion relations in ϕp theories and theories with polynomial interaction correspond to projective triangulations of accordiohedra. Following the very recent development [6] we also extend our analysis to one-loop integrands in the quartic theory.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
David Damgaard ◽  
Livia Ferro ◽  
Tomasz Łukowski ◽  
Robert Moerman

Abstract In this paper we study a relation between two positive geometries: the momen- tum amplituhedron, relevant for tree-level scattering amplitudes in $$ \mathcal{N} $$ N = 4 super Yang-Mills theory, and the kinematic associahedron, encoding tree-level amplitudes in bi-adjoint scalar φ3 theory. We study the implications of restricting the latter to four spacetime dimensions and give a direct link between its canonical form and the canonical form for the momentum amplituhedron. After removing the little group scaling dependence of the gauge theory, we find that we can compare the resulting reduced forms with the pull-back of the associahedron form. In particular, the associahedron form is the sum over all helicity sectors of the reduced momentum amplituhedron forms. This relation highlights the common sin- gularity structure of the respective amplitudes; in particular, the factorization channels, corresponding to vanishing planar Mandelstam variables, are the same. Additionally, we also find a relation between these canonical forms directly on the kinematic space of the scalar theory when reduced to four spacetime dimensions by Gram determinant constraints. As a by-product of our work we provide a detailed analysis of the kinematic spaces relevant for the four-dimensional gauge and scalar theories, and provide direct links between them.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Arushi Bodas ◽  
Soubhik Kumar ◽  
Raman Sundrum

Abstract Non-analyticity in co-moving momenta within the non-Gaussian bispectrum is a distinctive sign of on-shell particle production during inflation, presenting a unique opportunity for the “direct detection” of particles with masses as large as the inflationary Hubble scale (H). However, the strength of such non-analyticity ordinarily drops exponentially by a Boltzmann-like factor as masses exceed H. In this paper, we study an exception provided by a dimension-5 derivative coupling of the inflaton to heavy-particle currents, applying it specifically to the case of two real scalars. The operator has a “chemical potential” form, which harnesses the large kinetic energy scale of the inflaton, $$ {\overset{\cdot }{\phi}}_0^{1/2}\approx 60H $$ ϕ ⋅ 0 1 / 2 ≈ 60 H , to act as an efficient source of scalar particle production. Derivative couplings of inflaton ensure radiative stability of the slow-roll potential, which in turn maintains (approximate) scale-invariance of the inflationary correlations. We show that a signal not suffering Boltzmann suppression can be obtained in the bispectrum with strength fNL ∼ $$ \mathcal{O} $$ O (0.01–10) for an extended range of scalar masses $$ \lesssim {\overset{\cdot }{\phi}}_0^{1/2} $$ ≲ ϕ ⋅ 0 1 / 2 , potentially as high as 1015 GeV, within the sensitivity of upcoming LSS and more futuristic 21-cm experiments. The mechanism does not invoke any particular fine-tuning of parameters or breakdown of perturbation-theoretic control. The leading contribution appears at tree-level, which makes the calculation analytically tractable and removes the loop-suppression as compared to earlier chemical potential studies of non-zero spins. The steady particle production allows us to infer the effective mass of the heavy particles and the chemical potential from the variation in bispectrum oscillations as a function of co-moving momenta. Our analysis sets the stage for generalization to heavy bosons with non-zero spin.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Kang Zhou

Abstract We generalize the unifying relations for tree amplitudes to the 1-loop Feynman integrands. By employing the 1-loop CHY formula, we construct differential operators which transmute the 1-loop gravitational Feynman integrand to Feynman integrands for a wide range of theories, including Einstein-Yang-Mills theory, Einstein-Maxwell theory, pure Yang-Mills theory, Yang-Mills-scalar theory, Born-Infeld theory, Dirac-Born-Infeld theory, bi-adjoint scalar theory, non-linear sigma model, as well as special Galileon theory. The unified web at 1-loop level is established. Under the well known unitarity cut, the 1-loop level operators will factorize into two tree level operators. Such factorization is also discussed.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Francisco Borges ◽  
Freddy Cachazo

Abstract Tree-level Feynman diagrams in a cubic scalar theory can be given a metric such that each edge has a length. The space of metric trees is made out of orthants joined where a tree degenerates. Here we restrict to planar trees since each degeneration of a tree leads to a single planar neighbor. Amplitudes are computed as an integral over the space of metrics where edge lengths are Schwinger parameters. In this work we propose that a natural generalization of Feynman diagrams is provided by what are known as metric tree arrangements. These are collections of metric trees subject to a compatibility condition on the metrics. We introduce the notion of planar col lections of Feynman diagrams and argue that using planarity one can generate all planar collections starting from any one. Moreover, we identify a canonical initial collection for all n. Generalized k = 3 biadjoint amplitudes, introduced by Early, Guevara, Mizera, and one of the authors, are easily computed as an integral over the space of metrics of planar collections of Feynman diagrams.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Bo Feng ◽  
Yaobo Zhang

Abstract In the CHY-frame for the tree-level amplitudes, the bi-adjoint scalar theory has played a fundamental role because it gives the on-shell Feynman diagrams for all other theories. Recently, an interesting generalization of the bi-adjoint scalar theory has been given in [1] by the “Labelled tree graphs”, which carries a lot of similarity comparing to the bi-adjoint scalar theory. In this note, we have investigated the Labelled tree graphs from two different angels. In the first part of the note, we have shown that we can organize all cubic Feynman diagrams produces by the Labelled tree graphs to the “effective Feynman diagrams”. In the new picture, the pole structure of the whole theory is more manifest. In the second part, we have generalized the action of “picking pole” in the bi-adjoint scalar theory to general CHY-integrands which produce only simple poles.


2016 ◽  
Vol 2016 (1) ◽  
pp. 013B08 ◽  
Author(s):  
Toshiaki Fujimori ◽  
Takeo Inami ◽  
Keisuke Izumi ◽  
Tomotaka Kitamura
Keyword(s):  

Author(s):  
John Campbell ◽  
Joey Huston ◽  
Frank Krauss

This chapter is devoted to the technology of fixed-order calculations, in particular, in QCD. After a short summary of methods for the efficient evaluation of tree-level scattering amplitudes for multi-particle production, and their integration in phase space, next-to leading order corrections in QCD are addressed. Techniques for the evaluation of loop amplitudes with modern methods, based on the reduction to master integrals, either analytically or with numerical unitarity cut methods, are discussed in some detail. After identifying the problem of infrared divergences and illuminating their treatment with a toy model, Catani-Seymour subtraction is explicitly introduced and exemplified for two cases, namely inclusive hadron production in electron-positron annihilation and inclusive W boson production in hadron collisions. This chapter concludes with some remarks concerning the rapidly developing field of next-to-next-to leading order calculations.


Author(s):  
Philip D. Lunger ◽  
H. Fred Clark

In the course of fine structure studies of spontaneous “C-type” particle production in a viper (Vipera russelli) spleen cell line, designated VSW, virus particles were frequently observed within mitochondria. The latter were usually enlarged or swollen, compared to virus-free mitochondria, and displayed a considerable degree of cristae disorganization.Intramitochondrial viruses measure 90 to 100 mμ in diameter, and consist of a nucleoid or core region of varying density and measuring approximately 45 mμ in diameter. Nucleoid density variation is presumed to reflect varying degrees of condensation, and hence maturation stages. The core region is surrounded by a less-dense outer zone presumably representing viral capsid.Particles are usually situated in peripheral regions of the mitochondrion. In most instances they appear to be lodged between loosely apposed inner and outer mitochondrial membranes.


Sign in / Sign up

Export Citation Format

Share Document