ELIMINATION OF THE FIELD DEGREES OF FREEDOM IN RELATIVISTIC SYSTEM OF POINTLIKE CHARGES

2001 ◽  
Vol 16 (30) ◽  
pp. 4865-4889 ◽  
Author(s):  
A. NAZARENKO

The Hamiltonian formulation of relativistic system of charged particles plus electromagnetic field in the Dirac instant and front forms of dynamics is considered. The canonical realization of the Poincaré algebra in the terms of gauge-invariant variables is found. The procedure of elimination of the field degrees of freedom within the framework of the Dirac constraint theory is elaborated up to the first order in the coupling constant. The Poincaré generators in the terms of particle variables are obtained. The relations between the instant form generators and front form ones are examined. The instant form Hamiltonian in the weak-relativistic approximation results in the Darwin Hamiltonian.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Oscar Fuentealba ◽  
Marc Henneaux ◽  
Sucheta Majumdar ◽  
Javier Matulich ◽  
Turmoli Neogi

Abstract We investigate the asymptotic structure of the free Rarita-Schwinger theory in four spacetime dimensions at spatial infinity in the Hamiltonian formalism. We impose boundary conditions for the spin-3/2 field that are invariant under an infinite-dimensional (abelian) algebra of non-trivial asymptotic fermionic symmetries. The compatibility of this set of boundary conditions with the invariance of the theory under Lorentz boosts requires the introduction of boundary degrees of freedom in the Hamiltonian action, along the lines of electromagnetism. These boundary degrees of freedom modify the symplectic structure by a surface contribution appearing in addition to the standard bulk piece. The Poincaré transformations have then well-defined (integrable, finite) canonical generators. Moreover, improper fermionic gauge symmetries, which are also well-defined canonical transformations, are further enlarged and turn out to be parametrized by two independent angle-dependent spinor functions at infinity, which lead to an infinite-dimensional fermionic algebra endowed with a central charge. We extend next the analysis to the supersymmetric spin-(1, 3/2) and spin-(2, 3/2) multiplets. First, we present the canonical realization of the super-Poincaré algebra on the spin-(1, 3/2) multiplet, which is shown to be consistently enhanced by the infinite-dimensional abelian algebra of angle-dependent bosonic and fermionic improper gauge symmetries associated with the electromagnetic and the Rarita-Schwinger fields, respectively. A similar analysis of the spin-(2, 3/2) multiplet is then carried out to obtain the canonical realization of the super-Poincaré algebra, consistently enhanced by the abelian improper bosonic gauge transformations of the spin-2 field (BMS supertranslations) and the abelian improper fermionic gauge transformations of the spin-3/2 field.


Author(s):  
Flavio Mercati

This chapter explains in detail the current Hamiltonian formulation of SD, and the concept of Linking Theory of which (GR) and SD are two complementary gauge-fixings. The physical degrees of freedom of SD are identified, the simple way in which it solves the problem of time and the problem of observables in quantum gravity are explained, and the solution to the problem of constructing a spacetime slab from a solution of SD (and the related definition of physical rods and clocks) is described. Furthermore, the canonical way of coupling matter to SD is introduced, together with the operational definition of four-dimensional line element as an effective background for matter fields. The chapter concludes with two ‘structural’ results obtained in the attempt of finding a construction principle for SD: the concept of ‘symmetry doubling’, related to the BRST formulation of the theory, and the idea of ‘conformogeometrodynamics regained’, that is, to derive the theory as the unique one in the extended phase space of GR that realizes the symmetry doubling idea.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1519
Author(s):  
Mikulas Huba ◽  
Pavol Bistak ◽  
Damir Vrancic ◽  
Katarina Zakova

The article reviews the results of a number of recent papers dealing with the revision of the simplest approaches to the control of first-order time-delayed systems. The concise introductory review is extended by an analysis of two discrete-time approaches to dead-time compensation control of stable, integrating, and unstable first-order dead-time processes including simple diagnostics of the model used and focusing on the possibility of simplified but reliable plant modelling. The first approach, based on the first historically known dead-time compensator (DTC) with possible dead-beat performance, is based on the reconstruction of the actual process variables and the compensation of input disturbances by an extended state observer (ESO). Such solutions play an important role both in a disturbance observer (DOB) based control and in an active disturbance rejection control (ADRC). The second approach considered comes from the Smith predictor with two degrees of freedom, which combines feedforward control with output disturbance reconstruction and compensation by the parallel plant model. It is shown that these two approaches offer advantageous properties in the case of actuator limitations, in contrast to the commonly used PID controllers. However, when applied to integrating and unstable first-order systems, the unconstrained and possibly unobservable output disturbance signal of the second solution must be eliminated from the control loop, due to the hidden structural instability of the Smith predictor-like solutions. The modified solutions, usually referred to as filtered Smith predictor (FSP), then no longer provide a disturbance signal and thus no longer fully fit into the concept of Industry 4.0, which is focused on further optimization, predictive maintenance in dynamic systems, diagnosis, fault detection and fault identification of dynamic processes and forms the basis for the digitalization of smart production. Nevertheless, the detailed analysis of the elimination of the unstable disturbance response mode is also worth mentioning in terms of other possible solutions. The application of both approaches to the control of a thermal process shows almost equivalent quality, but with different dependencies on the tuning parameters used. It is confirmed that a more detailed identification of the controlled process and the resulting higher complexity of the control algorithms does not necessarily lead to an increase in the resulting quality of the transients, which underlines the importance of the simplified plant modelling for practice.


2014 ◽  
Vol 55 (5-7) ◽  
pp. 425-434
Author(s):  
Chueng-Ryong Ji ◽  
Bernard L. G. Bakker ◽  
Ziyue Li ◽  
Alfredo T. Suzuki

Author(s):  
Bappaditya Banerjee ◽  
Anil K. Bajaj

Abstract Dynamical systems with two degrees-of-freedom, with quadratic nonlinearities and parametric excitations are studied in this analysis. The 1:2 superharmonic internal resonance case is analyzed. The method of harmonic balance is used to obtain a set of four first-order amplitude equations that govern the dynamics of the first-order approximation of the response. An analytical technique, based on Melnikov’s method is used to predict the parameter range for which chaotic dynamics exist in the undamped averaged system. Numerical studies show that chaotic responses are quite common in these quadratic systems and chaotic responses occur even in presence of damping.


2002 ◽  
Vol 12 (9) ◽  
pp. 355-355
Author(s):  
J. L. Musfeldt ◽  
A. B. Sushkov ◽  
J. Jegoudez ◽  
A. Revcolevschi ◽  
P. Millet ◽  
...  

Optical spectroscopy is a sensitive probe of charge, spin, and lattice degrees of freedom. In this talk, I will detail our magneto-optical work on alpha'-NaV2O5, a prototypical ladder material, as well as the new Na2V3O7 nanotubes. Using changes in electronic structure with temperature and applied magnetic field, we have mapped out the H-T phase diagram of alpha'-NaV2O5. We find a temperature independent phase boundary at 27 T which persists above Tc (34 K), a kink in Tc(H) near 27 T, and H$\wedge $2 behavior of Tc(H) in the high field phase with an unusually small coupling constant. The energy scale of Tc and the newly discovered phase boundary at Hc (27 T) are identical. Confinement effects are investigated in the related nanotubes. Results include a larger gap than in analogous bulk materials as well as a low-energy rattling mode, which corresponds to the motion of Na+ ions inside the nanotube.


1932 ◽  
Vol 6 (4) ◽  
pp. 417-427 ◽  
Author(s):  
C. C. Coffin

The gaseous decompositions of the esters butylidene diacetate and ethylidene dipropionate have been studied from points of view previously outlined in papers on the decomposition of ethylidene diacetate (2, 3). The decomposition velocities have been measured at initial pressures of from 5 to 56 cm. of mercury and at temperatures between 211 and 265 °C. The reactions are homogeneous and of the first order. They agree with the Arrhenius equation and give 100% yields (within experimental error) of an aldehyde and an anhydride. The preparation of the compounds and improvements in the technique of the velocity measurements are described.While the specific velocities of the three reactions at any temperature are somewhat different, their activation energies are the same. It is suggested that in the case of such simple reactions, which are strictly localized within the molecular structure, the activation energy can be identified as the maximum energy that the reactive bonds may possess and still exist; i.e., it may be taken as a measure of the stability of the bonds which are broken in the reaction. The suggestion is also made that for a series of reactions which have the same activation energy, the specific velocities can be taken as a relative measure of the number of internal degrees of freedom that contribute to the energy of activation. On the basis of these assumptions it becomes possible to use reaction-velocity measurements for the investigation of intramolecular energy exchange. The theoretical significance of the data is further discussed and the scope of future work in this connection is indicated.The monomolecular velocity constants (sec−1) of the decomposition of ethylidene diacetate, ethylidene dipropionate and butylidene diacetate are given respectively by the equations [Formula: see text], [Formula: see text], and [Formula: see text].


2013 ◽  
Vol 275-277 ◽  
pp. 1978-1983
Author(s):  
Xiao Chuan Li ◽  
Jin Shuang Zhang

Hamiltonian dual equation of plane transversely isotropic magnetoelectroelastic solids is derived from variational principle and mixed state Hamiltonian elementary equations are established. Similar to the Hamiltonian formulation in classic dynamics, the z coordinate is treated analogous to the time coordinate. Then the x-direction is discreted with the linear elements to obtain the state-vector governing equations, which are a set of first order differential equations in z and are solved by the analytical approach. Because present approach is analytic in z direction, there is no restriction on the thickness of plate through the use of the present element. Using the propagation matrix method, the approach can be extended to analyze the problems of magnetoelectroelastic laminated plates. Present semi-analytical method of mixed Hamiltonian element has wide application area.


1982 ◽  
Vol 26 (01) ◽  
pp. 38-44
Author(s):  
James H. Duncan ◽  
Clinton E. Brown

A computational procedure is developed using first-order hydrodynamic theory to predict the motions and power absorption from arrays of similar three-dimensional buoys. The buoy shape and the number and placement of the buoys may be arbitrarily selected. The program provides for waves of selected frequency and direction or combinations thereof by simple superposition; thus, the effects on energy absorption of wave energy spectral distributions or short-crestedness can be analyzed. The computer model has been validated by comparison of its results with published analytically derived power optimal solutions for five buoys in a linear array. The program provides the power output of each buoy in the array with the associated motions in six degrees of freedom. The limited number of cases studied has provided the interesting result that identical buoys in an array tend to absorb wave energy at rates close to those of optimized systems for which buoy amplitude and phasing would have to be controlled.


2019 ◽  
Vol 34 (15) ◽  
pp. 1950073
Author(s):  
Vo Quoc Phong ◽  
Minh Anh Nguyen

Our analysis shows that SM-like electroweak phase transition (EWPT) in the [Formula: see text] (2-2-1) model is a first-order phase transition at the 200 GeV scale (the SM scale). Its strength [Formula: see text] is about 1–2.7 and the masses of new gauge bosons are larger than 1.7 TeV when the second VEV is larger than 535 GeV in a three-stage EWPT scenario and the coupling constant of [Formula: see text] group must be larger than 2. Therefore, this first-order EWPT can be used to fix VEVs and the coupling constant of the gauge group in electroweak models.


Sign in / Sign up

Export Citation Format

Share Document