DETECTION OF GRAVITATIONAL WAVES FROM INFLATION

2001 ◽  
Vol 16 (supp01a) ◽  
pp. 116-128 ◽  
Author(s):  
MARC KAMIONKOWSKI ◽  
ANDREW H. JAFFE

Recent measurements of temperature fluctuations in the cosmic microwave background (CMB) indicate that the Universe is flat and that large-scale structure grew via gravitational infall from primordial adiabatic perturbations. Both od these observations seem to indicate that we are on the right track with inflation. But what is the new physics responsible for inflation? This question can be answered with observations of the polarization of the CMB. Inflation predicts robustly the existence of a stochastic background of cosmological gravitational waves with an amplitude proportional to the square of the energy scale of inflation. This gravitational-wave background induces a unique signature in the polarization of the CMB. If inflation took place at an energy scale much smaller than that of grand unification, then the signal will be too small to be detectable. However, if inflation had something to do with grand unification or Planck-scale physics, then the signal is conceivably detectable in the optimistic case by the Planck satellite, or if not, then by a dedicated post-Planck CMB polarization experiment. Realistic developments in dector technology as well as a proper scan strategy could produce such a post-Planck experiment that would improve on Planck's sensitivity to the gravitational-wave background by several orders of magnitude in a decade timescale.

2006 ◽  
Vol 21 (12) ◽  
pp. 2459-2479 ◽  
Author(s):  
BRIAN G. KEATING ◽  
ALEXANDER G. POLNAREV ◽  
NATHAN J. MILLER ◽  
DEEPAK BASKARAN

We review current observational constraints on the polarization of the Cosmic Microwave Background (CMB), with a particular emphasis on detecting the signature of primordial gravitational waves. We present an analytic solution to the Polanarev approximation for CMB polarization produced by primordial gravitational waves. This simplifies the calculation of the curl, or B-mode power spectrum associated with gravitational waves during the epoch of cosmological inflation. We compare our analytic method to existing numerical methods and also make predictions for the sensitivity of upcoming CMB polarization observations to the inflationary gravitational wave background. We show that upcoming experiments should be able either detect the relic gravitational wave background or completely rule out whole classes of inflationary models.


2012 ◽  
Vol 8 (S288) ◽  
pp. 61-67
Author(s):  
Colin Bischoff ◽  

AbstractThe search for B-mode, or curl-type, polarization in the Cosmic Microwave Background is the most promising technique to constrain or detect primordial gravitational waves predicted by the theory of inflation. The Bicep telescope, which observed from the South Pole for three years from 2006 through 2008, is the first experiment specifically designed to target this signal. We review the observational motivations for inflation, the advantages of B-mode observations as a technique for detecting the gravitational wave background, and the design features of Bicep that optimize it for this search. The final analysis of all three seasons of Bicep data is in progress, representing a 50% increase in integration time compared to the result from Chiang et al. (2010). A preview of the three year result includes E-mode and B-mode maps, as well as the projected constraint on r, the tensor-to-scalar ratio.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Soubhik Kumar ◽  
Raman Sundrum ◽  
Yuhsin Tsai

Abstract Cosmological phase transitions in the primordial universe can produce anisotropic stochastic gravitational wave backgrounds (GWB), similar to the cosmic microwave background (CMB). For adiabatic perturbations, the fluctuations in GWB follow those in the CMB, but if primordial fluctuations carry an isocurvature component, this need no longer be true. It is shown that in non-minimal inflationary and reheating settings, primordial isocurvature can survive in GWB and exhibit significant non-Gaussianity (NG) in contrast to the CMB, while obeying current observational bounds. While probing such NG GWB is at best a marginal possibility at LISA, there is much greater scope at future proposed detectors such as DECIGO and BBO. It is even possible that the first observations of inflation-era NG could be made with gravitational wave detectors as opposed to the CMB or Large-Scale Structure surveys.


2005 ◽  
Vol 14 (08) ◽  
pp. 1347-1364 ◽  
Author(s):  
XIULIAN WANG ◽  
BO FENG ◽  
MINGZHE LI ◽  
XUE-LEI CHEN ◽  
XINMIN ZHANG

In the "natural inflation" model, the inflaton potential is periodic. We show that Planck scale physics may induce corrections to the inflaton potential, which is also periodic with a greater frequency. Such high frequency corrections produce oscillating features in the primordial fluctuation power spectrum, which are not entirely excluded by the current observations and may be detectable in high precision data of cosmic microwave background (CMB) anisotropy and large scale structure (LSS) observations.


2019 ◽  
Vol 100 (4) ◽  
Author(s):  
Robert R. Caldwell ◽  
Tristan L. Smith ◽  
Devin G. E. Walker

2019 ◽  
Vol 209 ◽  
pp. 01036
Author(s):  
Dafne Guetta

Multimessenger observations may hold the key to learn about the most energetic sources in the universe. The recent construction of large scale observatories opened new possibilities in testing non thermal cosmic processes with alternative probes, such as high energy neutrinos and gravitational waves. We propose to combine information from gravitational wave detections, neutrino observations and electromagnetic signals to obtain a comprehensive picture of some of the most extreme cosmic processes. Gravitational waves are indicative of source dynamics, such as the formation, evolution and interaction of compact objects. These compact objects can play an important role in astrophysical particle acceleration, and are interesting candidates for neutrino and in general high-energy astroparticle studies. In particular we will concentrate on the most promising gravitational wave emitter sources: compact stellar remnants. The merger of binary black holes, binary neutron stars or black hole-neutron star binaries are abundant gravitational wave sources and will likely make up the majority of detections. However, stellar core collapse with rapidly rotating core may also be significant gravitational wave emitter, while slower rotating cores may be detectable only at closer distances. The joint detection of gravitational waves and neutrinos from these sources will probe the physics of the sources and will be a smoking gun of the presence of hadrons in these objects which is still an open question. Conversely, the non-detection of neutrinos or gravitational waves from these sources will be fundamental to constrain the hadronic content.


2019 ◽  
Vol 209 ◽  
pp. 01045
Author(s):  
Fulvio Ricci

We review the present status of the Gravitational wave detectors on the Earth, focusing the attention on the present innovations and the longer term perspectives to improve their sensitivity. Then we conclude mentioning few potential searches of new Physics phenomena to be performed with these detectors and those of the third generation.


2013 ◽  
Vol 22 (01) ◽  
pp. 1341008 ◽  
Author(s):  
BHAL CHANDRA JOSHI

In the last decade, the use of an ensemble of radio pulsars to constrain the characteristic strain caused by a stochastic gravitational wave background has advanced the cause of detection of very low frequency gravitational waves (GWs) significantly. This electromagnetic means of GW detection, called Pulsar Timing Array (PTA), is reviewed in this paper. The principle of operation of PTA, the current operating PTAs and their status are presented along with a discussion of the main challenges in the detection of GWs using PTA.


2000 ◽  
Vol 09 (03) ◽  
pp. 293-297 ◽  
Author(s):  
D. BUSKULIC ◽  
L. DEROME ◽  
R. FLAMINIO ◽  
F. MARION ◽  
L. MASSONET ◽  
...  

A new generation of large scale and complex Gravitational Wave detectors is building up. They will produce big amount of data and will require intensive and specific interactive/batch data analysis. We will present VEGA, a framework for such data analysis, based on ROOT. VEGA uses the Frame format defined as standard by GW groups around the world. Furthermore, new tools are developed in order to facilitate data access and manipulation, as well as interface with existing algorithms. VEGA is currently evaluated by the VIRGO experiment.


2015 ◽  
Vol 24 (04) ◽  
pp. 1541005
Author(s):  
James B. Dent

A primordial gravitational wave background is a hallmark of inflationary cosmology. The recent announcement made by the BICEP2 collaboration of a possible measurement of B-mode polarization of the CMB on degree scales has produced an abundance of ideas and speculations on how such a signal constrains the inflationary paradigm, or possible alternative mechanisms of gravitational wave production. Here the possibility of a contribution to the gravitational wave background from the relaxation of a scalar field after a global phase transition is reviewed. The general contribution to the overall power is shown, and it is then demonstrated that if the BICEP2 result were to hold, this mechanism could at best produce a very small fraction of the measured tensor power.


Sign in / Sign up

Export Citation Format

Share Document