A MONTE CARLO SIMULATION OF THE COSMIC RAYS INTERACTIONS WITH THE EARTH'S ATMOSPHERE

2002 ◽  
Vol 17 (12n13) ◽  
pp. 1625-1634 ◽  
Author(s):  
P. ZUCCON

Substantial fluxes of protons and leptons with energies below the geomagnetic cutoff have been measured by the AMS experiment at altitudes of 370-390 Km, in the latitude interval ±51.7°. The production mechanisms of the observed trapped fluxes are investigated in detail by means of the FLUKA Monte Carlo simulation code. All known processes involved in the interaction of the cosmic protons with the atmosphere (detailed descriptions of the magnetic field atmospheric density, as well as the electromagnetic and nuclear interaction processes) are included in the simulation. The results are presented and compared with the experimental data, indicating good agreement with the observed fluxes. The impact of secondary proton flux on particle production in atmosphere is briefly discussed.

1978 ◽  
Vol 31 (4) ◽  
pp. 299 ◽  
Author(s):  
HA Blevin ◽  
J Fletcher ◽  
SR Hunter

Hunter (1977) found that a Monte-Carlo simulation of electron swarms in hydrogen, based on an isotropic scattering model, produced discrepancies between the predicted and measured electron transport parameters. The present paper shows that, with an anisotropic scattering model, good agreement is obtained between the predicted and experimental data. The simulation code is used here to calculate various parameters which are not directly measurable.


2002 ◽  
Vol 73 (2) ◽  
pp. 910-913 ◽  
Author(s):  
A. Hatayama ◽  
T. Sakurabayashi ◽  
Y. Ishi ◽  
K. Makino ◽  
M. Ogasawara ◽  
...  

Author(s):  
Ignacio Sepulveda ◽  
Jennifer S. Haase ◽  
Philip L.-F. Liu ◽  
Mircea Grigoriu ◽  
Brook Tozer ◽  
...  

We describe the uncertainties of altimetry-predicted bathymetry models and then quantify the impact of this uncertainty in tsunami hazard assessments. The study consists of three stages. First, we study the statistics of errors of altimetry-predicted bathymetry models. Second, we employ these statistics to propose a random field model for errors anywhere. Third, we use bathymetry samples to conduct a Monte Carlo simulation and describe the tsunami response uncertainty. We found that bathymetry uncertainties have a greater impact in shallow areas. We also noted that tsunami leading waves are less affected by uncertainties.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/zzL_XWWAQ7o


2021 ◽  
Vol 275 ◽  
pp. 01005
Author(s):  
Ruipeng Tan

This paper focuses on comparing portfolio management and construction before and after the coronavirus. First, this paper presents the importance of building up portfolios for investors to diversify their risks. Theories on portfolio management are discussed in this section to show how they have been developed to help on investing and reduce risk. Then, the paper moves on to show the impact of the pandemic on the financial market and portfolio management. Sample data on tech stock returns are collected to perform a Monte Carlo simulation on portfolio construction to find out the efficient portfolio before and after the COVID-19 outbreak. The efficient portfolio is build based on the Markowitz theory to find the combination. Comparisons between these portfolio constructions are made to find out the changes in portfolio management and construction under the pandemic era. In conclusion, this paper presents how pandemic has changed and impacted the investments and lists recommendations on future portfolio management and construction.


2017 ◽  
Vol 26 ◽  
pp. 44-53
Author(s):  
Enrique Campbell ◽  
Amilkar Illaya-Ayza ◽  
Joaquín Izquierdo ◽  
Rafael Pérez-García ◽  
Idel Montalvo

Water Supply Network (WSN) sectorization is a broadly known technique aimed at enhancing water supply management. In general, existing methodologies for sectorization of WSNs are limited to assessment of the impact of its implementation over reduction of background leakage, underestimating increased capacity to detect new leakage events and undermining appropriate investment substantiation. In this work, we raise this issue and put in place a methodology to optimize sectors' design. To this end, we carry out a novel combination of the Short Run Economic Leakage Level concept (SRELL- corresponding to leakage level that can occur in a WSN in a certain period of time and whose reparation would be more costly than the benefits that can be obtained). With a non-deterministic optimization method based on Genetic Algorithms (GAs) in combination with Monte Carlo simulation. As an example of application, methodology is implemented over a 246 km pipe-long WSN, reporting 72 397 $/year as net profit.


Sign in / Sign up

Export Citation Format

Share Document