POTENTIALS OF ARBITRARY FORCES WITH FRACTIONAL DERIVATIVES

2004 ◽  
Vol 19 (17n18) ◽  
pp. 3083-3092 ◽  
Author(s):  
EQAB M. RABEI ◽  
TAREQ S. ALHALHOLY ◽  
AKRAM ROUSAN

The Laplace transform of fractional integrals and fractional derivatives is used to develop a general formula for determining the potentials of arbitrary forces: conservative and nonconservative in order to introduce dissipative effects (such as friction) into Lagrangian and Hamiltonian mechanics. The results are found to be in exact agreement with Riewe's results of special cases. Illustrative examples are given.

2001 ◽  
Vol 33 (1) ◽  
pp. 223-241 ◽  
Author(s):  
Daniel Dufresne

This paper is about the probability law of the integral of geometric Brownian motion over a finite time interval. A partial differential equation is derived for the Laplace transform of the law of the reciprocal integral, and is shown to yield an expression for the density of the distribution. This expression has some advantages over the ones obtained previously, at least when the normalized drift of the Brownian motion is a non-negative integer. Bougerol's identity and a relationship between Brownian motions with opposite drifts may also be seen to be special cases of these results.


2000 ◽  
Vol 23 (2) ◽  
pp. 99-102
Author(s):  
M. Aslam Chaudhry

The Laplace transform of the functionstν(1+t)β,Reν>−1, is expressed in terms of Whittaker functions. This expression is exploited to evaluate infinite integrals involving products of Bessel functions, powers, exponentials, and Whittaker functions. Some special cases of the result are discussed. It is also demonstrated that the famous identity∫0∞sin (ax)/x dx=π/2is a special case of our main result.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Ghulam Farid ◽  
Naveed Latif ◽  
Matloob Anwar ◽  
Ali Imran ◽  
Muhammad Ozair ◽  
...  

Abstract This research explores Caputo k-fractional integral inequalities for functions whose nth order derivatives are absolutely continuous and possess Grüss type variable bounds. Using Chebyshev inequality (Waheed et al. in IEEE Access 7:32137–32145, 2019) for Caputo k-fractional derivatives, several integral inequalities are derived. Further, Laplace transform of Caputo k-fractional derivative is presented and Caputo k-fractional derivative and Riemann–Liouville k-fractional integral of an extended generalized Mittag-Leffler function are calculated. Moreover, using the extended generalized Mittag-Leffler function, Caputo k-fractional differential equations are presented and their solutions are proposed by applying the Laplace transform technique.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Tapas Das ◽  
Altuğ Arda

The second-orderN-dimensional Schrödinger equation with pseudoharmonic potential is reduced to a first-order differential equation by using the Laplace transform approach and exact bound state solutions are obtained using convolution theorem. Some special cases are verified and variations of energy eigenvaluesEnas a function of dimensionNare furnished. To give an extra depth of this paper, the present approach is also briefly investigated for generalized Morse potential as an example.


2017 ◽  
Vol 21 (6 Part A) ◽  
pp. 2299-2305 ◽  
Author(s):  
Ilknur Koca ◽  
Abdon Atangana

Recently Hristov using the concept of a relaxation kernel with no singularity developed a new model of elastic heat diffusion equation based on the Caputo-Fabrizio fractional derivative as an extended version of Cattaneo model of heat diffusion equation. In the present article, we solve exactly the Cattaneo-Hristov model and extend it by the concept of a derivative with non-local and non-singular kernel by using the new Atangana-Baleanu derivative. The Cattaneo-Hristov model with the extended derivative is solved analytically with the Laplace transform, and numerically using the Crank-Nicholson scheme.


2017 ◽  
Vol 21 (suppl. 1) ◽  
pp. 335-342 ◽  
Author(s):  
Feng Gao ◽  
Xiao-Jun Yang ◽  
Syed Mohyud-Din

The Riemann-Liouville and Caputo-Liouville fractional derivatives without singular kernel are proposed as mathematical tools to describe the mathematical models in line viscoelasticity in the present article. The fractional mechanical models containing the Maxwell and Kelvin-Voigt elements are graphically discussed with the Laplace transform. The results are accurate and efficient to reveal the complex behaviors of the real materials.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
S. Gaboury ◽  
R. Tremblay

In 1970, several interesting new summation formulas were obtained by using a generalized chain rule for fractional derivatives. The main object of this paper is to obtain a presumably new general formula. Many special cases involving special functions of mathematical physics such as the generalized hypergeometric functions, the Appell F1 function, and the Lauricella functions of several variables FD(n) are given.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
P. V. Shah ◽  
A. D. Patel ◽  
I. A. Salehbhai ◽  
A. K. Shukla

This paper provides an analytic solution ofRLelectrical circuit described by a fractional differential equation of the order0<α≤1. We use the Laplace transform of the fractional derivative in the Caputo sense. Some special cases for the different source terms have also been discussed.


2002 ◽  
Vol 123 (27) ◽  
pp. 1-17 ◽  
Author(s):  
Bogoljub Stankovic

A definition of the Laplace transform of elements of D'?(?) of a subspace of distributions is given which can successfully be ap?plied to solve in a prescribed domain linear equations with derivatives, par?tial derivatives fractional derivatives and convolutions, all with initial or boundary conditions, regardless of the existence of classical or generalized solutions.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Javed Iqbal ◽  
Khurram Shabbir ◽  
Liliana Guran

In this work, we combined two techniques, the variational iteration technique and the Laplace transform method, in order to solve some nonlinear-time fractional partial differential equations. Although the exact solutions may exist, we introduced the technique VITM that approximates the solutions that are difficult to find. Even a single iteration best approximates the exact solutions. The fractional derivatives being used are in the Caputo-Fabrizio sense. The reliability and efficiency of this newly introduced method is discussed in details from its numerical results and their graphical approximations. Moreover, possible consequences of these results as an application of fixed-point theorem are placed before the experts as an open problem.


Sign in / Sign up

Export Citation Format

Share Document