ISOTOPIC COMPOSITION OF COSMIC RAYS: RESULTS FROM THE COSMIC RAY ISOTOPE SPECTROMETER ON THE ACE SPACECRAFT

2005 ◽  
Vol 20 (29) ◽  
pp. 6633-6633
Author(s):  
M. H. ISRAEL

Over the past seven years the Cosmic Ray Isotope Spectrometer (CRIS) on the ACE spacecraft has returned data with an unprecedented combination of excellent mass resolution and high statistics, describing the isotopic composition of elements from lithium through nickel in the energy interval ~ 50 to 500 MeV/nucleon. These data have demonstrated: * The time between nucleosynthesis and acceleration of the cosmic-ray nuclei is at least 105 years. The supernova in which nucleosynthesis takes place is thus not the same supernova that accelerates a heavy nucleus to cosmic-ray energy. * The mean confinement time of cosmic rays in the Galaxy is 15 Myr. * The isotopic composition of the cosmic-ray source is remarkably similar to that of solar system. The deviations that are observed, particularly at 22 Ne and 58 Fe , are consistent with a model in which the cosmic-ray source is OB associations in which the interstellar medium has solar-system composition enriched by roughly 20% admixture of ejecta from Wolf-Rayet stars and supernovae. * Cosmic-ray secondaries that decay only by electron capture provide direct evidence for energy loss of cosmic rays as they penetrate the solar system. This invited overview paper at ECRS 19 was largely the same as an invited paper presented a month earlier at the 8th Nuclei in the Cosmos Conference in Vancouver. The proceedings of that conference will be published shortly by Elsevier as a special edition of Nuclear Physics A. For further summary of results from CRIS, the reader is referred to URL 〈〉 and links on that page to CRIS and to Science News.

O f the nuclear cosmic rays arriving in the vicinity of Earth from interstellar space, more than 90% have energies less than 1010 eV /u.f Some effects of their modulation (including deceleration) in the Solar System are briefly discussed. The origin of particles at energies < 107 eV/u is still obscure. They could be due to stellar explosions or to solar emissions, or perhaps to interaction of interstellar gas with the solar wind. Between 108 and 1010 eV/u, the composition appears constant to ca. 30% within the statistics of available data. Cosmic rays traverse a mean path length of 6 g/cm 2 in a medium assumed to contain nine hydrogen atoms for each helium atom. Spallation reactions occurring in this medium result in enhancement of many cosmic-ray elements that are more scarce in the general abundances by several orders of magnitude. Cosmic-ray dwell time in the Galaxy seems to be < 107 years. The source composition of cosmic rays has been derived for elements with atomic numbers 1 ≤ Z ≤ 26. A comparison with abundances in the Solar System implies that the latter is richer in hydrogen and helium by a factor of ca. 20, in N and O by ca. 5, and in C by a factor of ca.2. Possible interpretations invoke (a) nucleosynthesis of cosmic rays in certain sources, e.g. supernovae, or (b) models of selective injection that depend, e.g. on ionization potentials or ionization cross sections. Calculated isotopic abundances of arriving cosmic rays are compared with the observed values now becoming available, and found to be in general agreement. Recent progress in probing the composition and spectrum of ultra-heavy nuclei is outlined.


1978 ◽  
Vol 3 (3) ◽  
pp. 233-234
Author(s):  
L. J. Gleeson ◽  
G. M. Webb

Recently (Gleeson (1972), Quenby (1973), Gleeson and Webb (1974, 1978)) it has been shown that the mean rate of change of momentum of cosmic rays reckoned for a volume fixed in the solar system iswhere G = (1/Up)(∂Up/∂r)si the cosmic-ray density gradient with Up, the differential number density with respect to momentum p at position r. (cf also the integral form of (1) by Jokipii and Parker 1967).


1981 ◽  
Vol 94 ◽  
pp. 93-106
Author(s):  
R. Cowsik

Propagation of cosmic rays is discussed with the intent of deriving results relevent to the origin of cosmic rays. Starting from a brief description of the methods for demodulating the effects of the solar wind on the spectra of particles, we describe an accurate method for correcting for spallation effects on the cosmic-ray nuclei during their transport from the sources subsequent to their acceleration. We present the composition of cosmic rays at the sources and discuss its implications to their origin. We discuss briefly the effects of stochastic acceleration in the interstellar medium on the relative spectra of primaries and secondaries in cosmic rays and show that the observation of decreasing relative abundance of secondaries with increasing energy rules out such phenomena for galactic cosmic rays. The spectrum of cosmic-ray electrons is discussed in terms of contributions from a discrete set of sources situated at various distances from the solar system on the galactic plane. We show that unless there are at least 3.104 sources actively accelerating cosmis rays in the Galaxy the spectrum of electrons would have a premature cut-off at high energies. Finally we point out some important questions that need to be clearly resolved for making further progress in the field.


1979 ◽  
Vol 84 ◽  
pp. 485-490
Author(s):  
V. L. Ginzburg

Cosmic rays were discovered in 1912, but it was only about forty years later that they were found to play an important role in astronomy. Firstly, cosmic rays (including the electron component) are an important source of astronomical information, namely the cosmic synchrotron radiation. Secondly, cosmic rays are essential as energetic and dynamical factors in the galaxy and also as a source of heating and transformation of the interstellar gas composition. Suffice it to remember, for example, that near the solar system the cosmic ray energy density is about the same as the thermal energy of the interstellar gas, and the cosmic ray pressure is likewise about the same as the interstellar gas pressure. Thus, there is every reason to believe that galaxies do not consist of stars and gas only, but of cosmic rays as well.


1970 ◽  
Vol 39 ◽  
pp. 168-183
Author(s):  
E. N. Parker

The topic of this presentation is the origin and dynamical behavior of the magnetic field and cosmic-ray gas in the disk of the Galaxy. In the space available I can do no more than mention the ideas that have been developed, with but little explanation and discussion. To make up for this inadequacy I have tried to give a complete list of references in the written text, so that the interested reader can pursue the points in depth (in particular see the review articles Parker, 1968a, 1969a, 1970). My purpose here is twofold, to outline for you the calculations and ideas that have developed thus far, and to indicate the uncertainties that remain. The basic ideas are sound, I think, but, when we come to the details, there are so many theoretical alternatives that need yet to be explored and so much that is not yet made clear by observations.


Author(s):  
Arnon Dar

Changes in the solar neighbourhood due to the motion of the sun in the Galaxy, solar evolution, and Galactic stellar evolution influence the terrestrial environment and expose life on the Earth to cosmic hazards. Such cosmic hazards include impact of near-Earth objects (NEOs), global climatic changes due to variations in solar activity and exposure of the Earth to very large fluxes of radiations and cosmic rays from Galactic supernova (SN) explosions and gamma-ray bursts (GRBs). Such cosmic hazards are of low probability, but their influence on the terrestrial environment and their catastrophic consequences, as evident from geological records, justify their detailed study, and the development of rational strategies, which may minimize their threat to life and to the survival of the human race on this planet. In this chapter I shall concentrate on threats to life from increased levels of radiation and cosmic ray (CR) flux that reach the atmosphere as a result of (1) changes in solar luminosity, (2) changes in the solar environment owing to the motion of the sun around the Galactic centre and in particular, owing to its passage through the spiral arms of the Galaxy, (3) the oscillatory displacement of the solar system perpendicular to the Galactic plane, (4) solar activity, (5) Galactic SN explosions, (6) GRBs, and (7) cosmic ray bursts (CRBs). The credibility of various cosmic threats will be tested by examining whether such events could have caused some of the major mass extinctions that took place on planet Earth and were documented relatively well in the geological records of the past 500 million years (Myr). A credible claim of a global threat to life from a change in global irradiation must first demonstrate that the anticipated change is larger than the periodical changes in irradiation caused by the motions of the Earth, to which terrestrial life has adjusted itself. Most of the energy of the sun is radiated in the visible range. The atmosphere is highly transparent to this visible light but is very opaque to almost all other bands of the electromagnetic spectrum except radio waves, whose production by the sun is rather small.


1991 ◽  
Vol 144 ◽  
pp. 121-130
Author(s):  
J. Brand ◽  
J.G.A. Wouterloot

In the outer Galaxy (defined here as those parts of our system with galactocentric radii R>R0) the HI gas density (Wouterloot et al., 1990), the cosmic ray flux (Bloemen et al, 1984) and the metallicity (Shaver et al., 1983) are lower than in the inner parts. Also, the effect of a spiral density wave is much reduced in the outer parts of the Galaxy due to corotation. This changing environment might be expected to have its influence on the formation of molecular clouds and on star formation within them. In fact, some differences with respect to the inner Galaxy have been found: the ratio of HI to H2 surface density is increasing from about 5 near the Sun to about 100 at R≈20kpc (Wouterloot et al., 1990). Because of the “flaring” of the gaseous disk, the scale height of both the atomic and the molecular gas increases by about a factor of 3 between R0 and 2R0 (Wouterloot et al., 1990), so the mean volume density of both constituents decreases even more rapidly than their surface densities. The size of HII regions decreases significantly with increasing galactocentric distance (Fich and Blitz, 1984), probably due to the fact that outer Galaxy clouds are less massive (see section 3.3), and therefore form fewer O-type stars than their inner Galaxy counter parts. There are indications that the cloud kinetic temperature is lower by a few degrees (Mead and Kutner, 1988), although it is not clear to what extent this is caused by beam dilution.


1968 ◽  
Vol 1 (4) ◽  
pp. 154-157
Author(s):  
D. J. Cooke ◽  
A. G. Fenton

Primary cosmic rays passing through the solar system carry with them valuable information about solar and astrophysical phenomena in the form of intensity and spectral variations. In order that this information be efficiently extracted from observations of the directional cosmic-ray flux at the surface of the Earth, it is essential to have accurate information available to enable the relating of the observed secondary cosmic-ray directions of motion and intensity to those outside the range of the disturbing terrestrial influences.


1971 ◽  
Vol 2 ◽  
pp. 740-756
Author(s):  
Maurice M. Shapiro

The ‘Galactic’ cosmic rays impinging on the Earth come from afar over tortuous paths, traveling for millions of years. These particles are the only known samples of matter that reach us from regions of space beyond the solar system. Their chemical and isotopic composition and their energy spectra provide clues to the nature of cosmic-ray sources, the properties of interstellar space, and the dynamics of the Galaxy. Various processes in high-energy astrophysics could be illuminated by a more complete understanding of the arriving cosmic rays, including the electrons and gamma rays.En route, some of theprimordialcosmic-ray nuclei have been transformed by collision with interstellar matter, and the composition is substantially modified by these collisions. A dramatic consequence of the transformations is the presence in the arriving ‘beam’ of considerable fluxes of purely secondary elements (Li, Be, B), i.e., species that are, in all probability, essentially absent at the sources. We shall here discuss mainly the composition of the arriving ‘heavy’ nuclei -those heavier than helium - and what they teach us about thesourcecomposition, the galactic confinement of the particles, their path lengths, and their transit times.


Sign in / Sign up

Export Citation Format

Share Document