HAGEDORN BEHAVIOR OF STRINGS IN AdS3/BTZ

2008 ◽  
Vol 23 (14n15) ◽  
pp. 2264-2266
Author(s):  
TOSHIHIRO MATSUO

We study a finite temperature string in curved space, especially in AdS3 and BTZ black hole background. We extract Hagedorn behavior of strings and argue thermodynamic properties in thermal AdS3 as well as in BTZ black hole background. In particular, we find the Hagedorn temperature of string on AdS3, which depends on the AdS3 curvature scale. We also find a tachyonic divergence for a BTZ black hole of string scale.

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Roberto Auzzi ◽  
Stefano Baiguera ◽  
Sara Bonansea ◽  
Giuseppe Nardelli ◽  
Kristian Toccacelo

Abstract We investigate the complexity=volume proposal in the case of Janus AdS3 geometries, both at zero and finite temperature. The leading contribution coming from the Janus interface is a logarithmic divergence, whose coefficient is a function of the dilaton excursion. In the presence of the defect, complexity is no longer topological and becomes temperature-dependent. We also study the time evolution of the extremal volume for the time-dependent Janus BTZ black hole. This background is not dual to an interface but to a pair of entangled CFTs with different values of the couplings. At late times, when the equilibrium is restored, the couplings of the CFTs do not influence the complexity rate. On the contrary, the complexity rate for the out-of-equilibrium system is always smaller compared to the pure BTZ black hole background.


2009 ◽  
Vol 60 (2) ◽  
pp. 169-173 ◽  
Author(s):  
Sayan K. Chakrabarti ◽  
Pulak Ranjan Giri ◽  
Kumar S. Gupta

1998 ◽  
Vol 13 (08) ◽  
pp. 1229-1262 ◽  
Author(s):  
MAKOTO NATSUUME ◽  
YUJI SATOH

We investigate the string theory on three-dimensional black holes discovered by Bañados, Teitelboim and Zanelli in the framework of conformal field theory. The model is described by an orbifold of the [Formula: see text] WZW model. The spectrum is analyzed by solving the level matching condition and we obtain winding modes. We then study the ghost problem and show explicit examples of physical states with negative norms. We discuss the tachyon propagation and the target space geometry, which are irrelevant to the details of the spectrum. we find a self-dual T-duality transformation reversing the black hole mass. We also discuss difficulties in string theory on curved space–time and possibilities of obtaining a sensible string theory on three-dimensional black holes. This work is the first attempt to quantize a string theory in a black hole background with an infinite number of propagating modes.


2011 ◽  
Vol 703 (1) ◽  
pp. 14-19 ◽  
Author(s):  
J. Sadeghi ◽  
H. Farahani ◽  
B. Pourhassan ◽  
S.M. Noorbakhsh

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Evita Verheijden ◽  
Erik Verlinde

Abstract We study the evaporation of two-dimensional black holes in JT gravity from a three-dimensional point of view. A partial dimensional reduction of AdS3 in Poincaré coordinates leads to an extremal 2D black hole in JT gravity coupled to a ‘bath’: the holographic dual of the remainder of the 3D spacetime. Partially reducing the BTZ black hole gives us the finite temperature version. We compute the entropy of the radiation using geodesics in the three-dimensional spacetime. We then focus on the finite temperature case and describe the dynamics by introducing time-dependence into the parameter controlling the reduction. The energy of the black hole decreases linearly as we slowly move the dividing line between black hole and bath. Through a re-scaling of the BTZ parameters we map this to the more canonical picture of exponential evaporation. Finally, studying the entropy of the radiation over time leads to a geometric representation of the Page curve. The appearance of the island region is explained in a natural and intuitive fashion.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Jan Albert

Abstract We study the self-gravitating Abrikosov vortex in curved space with and with-out a (negative) cosmological constant, considering both singular and non-singular solutions with an eye to hairy black holes. In the asymptotically flat case, we find that non-singular vortices round off the singularity of the point particle’s metric in 3 dimensions, whereas singular solutions consist of vortices holding a conical singularity at their core. There are no black hole vortex solutions. In the asymptotically AdS case, in addition to these solutions there exist singular solutions containing a BTZ black hole, but they are always hairless. So we find that in contrast with 4-dimensional ’t Hooft-Polyakov monopoles, which can be regarded as their higher-dimensional analogues, Abrikosov vortices cannot hold a black hole at their core. We also describe the implications of these results in the context of AdS/CFT and propose an interpretation for their CFT dual along the lines of the holographic superconductor.


2014 ◽  
Vol 54 (2) ◽  
pp. 142-148 ◽  
Author(s):  
Satoshi Ohya

We present a simple Lie-algebraic approach to momentum-space two-point functions of two-dimensional conformal field theory at finite temperature dual to the BTZ black hole. Making use of the real-time prescription of AdS/CFT correspondence and ladder equations of the Lie algebra so(2,2) ∼= sl(2,R)<sub>L</sub>⊕sl(2,R)<sub>R</sub>, we show that the finite-temperature two-point functions in momentum space satisfy linear recurrence relations with respect to the left and right momenta. These recurrence relations are exactly solvable and completely determine the momentum-dependence of retarded and advanced two-point functions of finite-temperature conformal field theory.


Sign in / Sign up

Export Citation Format

Share Document