scholarly journals NEUTRALINO–NUCLEON INTERACTION IN THE SPLIT SUSY SCENARIO OF THE DARK MATTER

2009 ◽  
Vol 24 (32) ◽  
pp. 6051-6069 ◽  
Author(s):  
R. S. PASECHNIK ◽  
V. A. BEYLIN ◽  
V. I. KUKSA ◽  
G. M. VERESHKOV

The split SUSY scenario with light Higgsino states is treated as an application to the dark matter problem. We have considered the structure of the neutralino–nucleon interaction and calculated cross-section of the neutralino–nucleon scattering. The decay properties of the lightest chargino and next lightest neutralino are analyzed in details.

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Seraina Glaus ◽  
Margarete Mühlleitner ◽  
Jonas Müller ◽  
Shruti Patel ◽  
Tizian Römer ◽  
...  

Abstract Having so far only indirect evidence for the existence of Dark Matter a plethora of experiments aims at direct detection of Dark Matter through the scattering of Dark Matter particles off atomic nuclei. For the correct interpretation and identification of the underlying nature of the Dark Matter constituents higher-order corrections to the cross section of Dark Matter-nucleon scattering are important, in particular in models where the tree-level cross section is negligibly small. In this work we revisit the electroweak corrections to the dark matter-nucleon scattering cross section in a model with a pseudo Nambu-Goldstone boson as the Dark Matter candidate. Two calculations that already exist in the literature, apply different approaches resulting in different final results for the cross section in some regions of the parameter space leading us to redo the calculation and analyse the two approaches to clarify the situation. We furthermore update the experimental constraints and examine the regions of the parameter space where the cross section is above the neutrino floor but which can only be probed in the far future.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
H. Hernández-Arellano ◽  
M. Napsuciale ◽  
S. Rodríguez

Abstract In this work we study the possibility that the gamma ray excess (GRE) at the Milky Way galactic center come from the annihilation of dark matter with a (1, 0) ⊕ (0, 1) space-time structure (spin-one dark matter, SODM). We calculate the production of prompt photons from initial state radiation, internal bremsstrahlung, final state radiation including the emission from the decay products of the μ, τ or hadronization of quarks. Next we study the delayed photon emission from the inverse Compton scattering (ICS) of electrons (produced directly or in the prompt decay of μ, τ leptons or in the hadronization of quarks produced in the annihilation of SODM) with the cosmic microwave background or starlight. All these mechanisms yield significant contributions only for Higgs resonant exchange, i.e. for M ≈ MH /2, and the results depend on the Higgs scalar coupling to SODM, gs. The dominant mechanism at the GRE bump is the prompt photon production in the hadronization of b quarks produced in $$ \overline{D}D\to \overline{b}b $$ D ¯ D → b ¯ b , whereas the delayed photon emission from the ICS of electrons coming from the hadronization of b quarks produced in the same reaction dominates at low energies (ω < 0.3 GeV ) and prompt photons from c and τ , as well as from internal bremsstrahlung, yield competitive contributions at the end point of the spectrum (ω ≥ 30 GeV ). Taking into account all these contributions, our results for photons produced in the annihilation of SODM are in good agreement with the GRE data for gs ∈ [0.98, 1.01] × 10−3 and M ∈ [62.470, 62.505] GeV . We study the consistency of the corresponding results for the dark matter relic density, the spin-independent dark matter-nucleon cross-section σp and the cross section for the annihilation of dark matter into $$ \overline{b}b $$ b ¯ b , τ+τ−, μ+μ− and γγ, taking into account the Higgs resonance effects, finding consistent results in all cases.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Andrzej Hryczuk ◽  
Maxim Laletin

Abstract We study a novel dark matter production mechanism based on the freeze-in through semi-production, i.e. the inverse semi-annihilation processes. A peculiar feature of this scenario is that the production rate is suppressed by a small initial abundance of dark matter and consequently creating the observed abundance requires much larger coupling values than for the usual freeze-in. We provide a concrete example model exhibiting such production mechanism and study it in detail, extending the standard formalism to include the evolution of dark matter temperature alongside its number density and discuss the importance of this improved treatment. Finally, we confront the relic density constraint with the limits and prospects for the dark matter indirect detection searches. We show that, even if it was never in full thermal equilibrium in the early Universe, dark matter could, nevertheless, have strong enough present-day annihilation cross section to lead to observable signals.


2020 ◽  
Vol 500 (4) ◽  
pp. 5583-5588
Author(s):  
Man Ho Chan ◽  
Chak Man Lee

ABSTRACT In the past decade, various instruments, such as the Large Area Telescope (LAT) on the Fermi Gamma Ray Space Telescope, the Alpha Magnetic Spectrometer (AMS) and the Dark Matter Particle Explorer(DAMPE), have been used to detect the signals of annihilating dark matter in our Galaxy. Although some excesses of gamma rays, antiprotons and electrons/positrons have been reported and are claimed to be dark matter signals, the uncertainties of the contributions of Galactic pulsars are still too large to confirm the claims. In this paper, we report on a possible radio signal of annihilating dark matter manifested in the archival radio continuum spectral data of the Abell 4038 cluster. By assuming a thermal annihilation cross-section and comparing the dark matter annihilation model with the null hypothesis (cosmic ray emission without dark matter annihilation), we obtain very large test statistic (TS) values, TS &gt; 45, for four popular annihilation channels, which correspond to more than 6σ statistical preference. This reveals a possible potential signal of annihilating dark matter. In particular, our results are also consistent with the recent claims of dark matter mass, m ≈ 30–50 GeV, annihilating via the $\rm b\bar{b}$ quark channel with the thermal annihilation cross-section. However, at this time, we cannot exclude the possibility that a better background cosmic ray model could explain the spectral data without recourse to dark matter annihilations.


2019 ◽  
Vol 495 (1) ◽  
pp. L124-L128 ◽  
Author(s):  
Man Ho Chan ◽  
Chak Man Lee

ABSTRACT In the past decade, some telescopes [e.g. Fermi-Large Area Telescope (LAT), Alpha Magnetic Spectrometer(AMS), and Dark Matter Particle Explorer(DAMPE)] were launched to detect the signals of annihilating dark matter in our Galaxy. Although some excess of gamma-rays, antiprotons, and electrons/positrons have been reported and claimed as dark matter signals, the uncertainties of Galactic pulsars’ contributions are still too large to confirm the claims. In this Letter, we report a possible radio signal of annihilating dark matter manifested in the archival radio continuum spectral data of the Abell 4038 cluster. By assuming the thermal annihilation cross-section and comparing the dark matter annihilation model with the null hypothesis (cosmic ray emission without dark matter annihilation), we get very large test statistic values &gt;45 for four popular annihilation channels, which correspond to more than 6.5σ statistical preference. This provides a very strong evidence for the existence of annihilating dark matter. In particular, our results also support the recent claims of dark matter mass m ≈ 30–50 GeV annihilating via the bb̄ quark channel with the thermal annihilation cross-section.


2008 ◽  
Vol 4 (S255) ◽  
pp. 56-60 ◽  
Author(s):  
Katherine Freese ◽  
Douglas Spolyar ◽  
Anthony Aguirre ◽  
Peter Bodenheimer ◽  
Paolo Gondolo ◽  
...  

AbstractThe first phase of stellar evolution in the history of the universe may be Dark Stars, powered by dark matter heating rather than by fusion. Weakly interacting massive particles, which are their own antiparticles, can annihilate and provide an important heat source for the first stars in the the universe. This talk presents the story of these Dark Stars. We make predictions that the first stars are very massive (~800M⊙), cool (6000 K), bright (~106L⊙), long-lived (~106years), and probable precursors to (otherwise unexplained) supermassive black holes. Later, once the initial DM fuel runs out and fusion sets in, DM annihilation can predominate again if the scattering cross section is strong enough, so that a Dark Star is born again.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 708 ◽  
Author(s):  
Vitaly Beylin ◽  
Maxim Bezuglov ◽  
Vladimir Kuksa ◽  
Egor Tretiakov

The interaction of high-energy leptons with components of Dark Matter in a hypercolor model is considered. The possibility of detection, using IceCube secondary neutrinos produced by quasielastic scattering of cosmic ray electrons off hidden mass particles, is investigated. The dominant contribution to the cross section results from diagrams with scalar exchanges. A strong dependence of the total cross section on the Dark Matter components mass is also found.


Sign in / Sign up

Export Citation Format

Share Document