scholarly journals STRONGLY INTERACTING MATTER AT FINITE CHEMICAL POTENTIAL: HYBRID MODEL APPROACH

2013 ◽  
Vol 28 (14) ◽  
pp. 1350051 ◽  
Author(s):  
P. K. SRIVASTAVA ◽  
C. P. SINGH

Search for a proper and realistic equation of state (EOS) for strongly interacting matter used in the study of the QCD phase diagram still appears as a challenging problem. Recently, we constructed a hybrid model description for the quark–gluon plasma (QGP) as well as hadron gas (HG) phases where we used an excluded volume model for HG and a thermodynamically consistent quasiparticle model for the QGP phase. The hybrid model suitably describes the recent lattice results of various thermodynamical as well as transport properties of the QCD matter at zero baryon chemical potential (μB). In this paper, we extend our investigations further in obtaining the properties of QCD matter at finite value of μB and compare our results with the most recent results of lattice QCD calculation.

2021 ◽  
Author(s):  
Olga Soloveva ◽  
Pierre Moreau ◽  
Elena Bratkovskaya

Abstract We review the transport properties of the strongly interacting quark-gluon plasma (QGP) created in heavy-ion collisions at ultrarelativistic energies, i.e. out-of equilibrium, and compare them to the equilibrium properties. The description of the strongly interacting (non-perturbative) QGP in equilibrium is based on the effective propagators and couplings from the Dynamical QuasiParticle Model (DQPM) that is matched to reproduce the equation-of-state of the partonic system above the deconfinement temperature $T_c$ from lattice QCD. We study the transport coefficients such as the ratio of shear viscosity and bulk viscosity over entropy density, diffusion coefficients, electric conductivity etc. versus temperature and baryon chemical potential. Based on a microscopic transport description of heavy-ion collisions we, furthermore, discuss which observables are sensitive to the QGP formation and its properties.


Particles ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 178-192 ◽  
Author(s):  
O. Soloveva ◽  
P. Moreau ◽  
L. Oliva ◽  
V. Voronyuk ◽  
V. Kireyeu ◽  
...  

We study the influence of the baryon chemical potential μ B on the properties of the Quark–Gluon–Plasma (QGP) in and out-of equilibrium. The description of the QGP in equilibrium is based on the effective propagators and couplings from the Dynamical QuasiParticle Model (DQPM) that is matched to reproduce the equation-of-state of the partonic system above the deconfinement temperature T c from lattice Quantum Chromodynamics (QCD). We study the transport coefficients such as the ratio of shear viscosity η and bulk viscosity ζ over entropy density s, i.e., η / s and ζ / s in the ( T , μ ) plane and compare to other model results available at μ B = 0 . The out-of equilibrium study of the QGP is performed within the Parton–Hadron–String Dynamics (PHSD) transport approach extended in the partonic sector by explicitly calculating the total and differential partonic scattering cross sections based on the DQPM and the evaluated at actual temperature T and baryon chemical potential μ B in each individual space-time cell where partonic scattering takes place. The traces of their μ B dependences are investigated in different observables for symmetric Au + Au and asymmetric Cu + Au collisions such as rapidity and m T -distributions and directed and elliptic flow coefficients v 1 , v 2 in the energy range 7.7 GeV ≤ s N N ≤ 200 GeV.


2018 ◽  
Vol 171 ◽  
pp. 02002
Author(s):  
David Tlusty

Exploration of the QCD phase diagram has been one of the main programs of contemporary nuclear physics. The intermediate baryon density region covers a broad range of the baryon chemical potential, between 100 and 700 MeV, and is expected to include a possible critial point at the end of a phase equilibrium curve between the hadron gas and quark gluon plasma phases. Experimental programs at the SPS and RHIC facilities have provided valuable insights in this range. These proceedings motivate the exploration of the QCD phase diagram through the use of strangeness. A selection of relevant experimental results from RHIC and SPS beam energy scan programs with associated theoretical predictions is presented along with a discussion of possible physical conclusions and future plans.


2018 ◽  
Vol 172 ◽  
pp. 08002
Author(s):  
Alejandro Ayala ◽  
Jorge David Castaño-Yepes ◽  
José Antonio Flores ◽  
Saúl Hernández ◽  
Luis Hernández

We study the QCD phase diagram using the linear sigma model coupled to quarks. We compute the effective potential at finite temperature and quark chemical potential up to ring diagrams contribution. We show that, provided the values for the pseudo-critical temperature Tc = 155 MeV and critical baryon chemical potential μBc ≃ 1 GeV, together with the vacuum sigma and pion masses. The model couplings can be fixed and that these in turn help to locate the region where the crossover transition line becomes first order.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Guruprasad Kadam ◽  
Swapnali Pawar

We study the equation of state (EoS) of hot and dense hadron gas by incorporating the excluded volume corrections into the ideal hadron resonance gas (HRG) model. The total hadron mass spectrum of the model is the sum of the discrete mass spectrum consisting of all the experimentally known hadrons and the exponentially rising continuous Hagedorn states. We confront the EoS of the model with lattice quantum chromodynamics (LQCD) results at finite baryon chemical potential. We find that this modified HRG model reproduces the LQCD results up to T=160 MeV at zero as well as finite baryon chemical potential. We further estimate the shear viscosity within the ambit of this model in the context of heavy-ion collision experiments.


2017 ◽  
Vol 32 (11) ◽  
pp. 1750061 ◽  
Author(s):  
Wenkai Fan ◽  
Xiaofeng Luo ◽  
Hong-Shi Zong

We evaluate the second to fourth-order baryon, charge and strangeness susceptibilities near a chiral critical point using the Nambu–Jona-Lasinio model under different temperatures and baryon chemical potential. Baryon number susceptibilities are found to be of the greatest magnitude, offering the strongest signal. Whereas the strangeness susceptibilities have the smallest divergence dominating area, owing to the large strange quark mass. We also make an attempt to compare our results with experiment data. The trend at high collision energy is found to be consistent between theory and experiment. The model calculation predicts more complex behavior at low collision energies, near the postulated critical end point.


2016 ◽  
Vol 25 (08) ◽  
pp. 1650049
Author(s):  
Yogesh Kumar ◽  
S. Somorendro Singh

We extend the previous study of dilepton production using [S. Somorendro Singh and Y. Kumar, Can. J. Phys. 92 (2014) 31] based on a simple quasiparticle model of quark–gluon plasma (QGP). In this model, finite value of quark mass uses temperature dependent chemical potential the so-called Temperature Dependent Chemical Potential Quark Mass (TDCPQM). We calculate dilepton production in the relevant range of mass region. It is observed that the production rate is marginally enhanced from the earlier work. This is due to the effect of TDCPQM and its effect is highly significant in the production of dilepton.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Xinyang Wang ◽  
Igor Shovkovy

AbstractWe derive a general expression for the absorptive part of the one-loop photon polarization tensor in a strongly magnetized quark-gluon plasma at nonzero baryon chemical potential. To demonstrate the application of the main result in the context of heavy-ion collisions, we study the effect of a nonzero baryon chemical potential on the photon emission rate. The rate and the ellipticity of photon emission are studied numerically as a function the transverse momentum (energy) for several values of temperature and chemical potential. When the chemical potential is small compared to the temperature, the rates of the quark and antiquark splitting processes (i.e., $$q\rightarrow q +\gamma $$ q → q + γ and $${\bar{q}}\rightarrow {\bar{q}} +\gamma $$ q ¯ → q ¯ + γ , respectively) are approximately the same. However, the quark splitting gradually becomes the dominant process with increasing the chemical potential. We also find that increasing the chemical potential leads to a growing total photon production rate but has only a small effect on the ellipticity of photon emission. The quark-antiquark annihilation ($$q+{\bar{q}}\rightarrow \gamma $$ q + q ¯ → γ ) also contributes to the photon production, but its contribution remains relatively small for a wide range of temperatures and chemical potentials investigated.


Sign in / Sign up

Export Citation Format

Share Document