scholarly journals θ13, μτ SYMMETRY BREAKING AND NEUTRINO YUKAWA TEXTURES

2013 ◽  
Vol 28 (24) ◽  
pp. 1350118 ◽  
Author(s):  
BISWAJIT ADHIKARY ◽  
AMBAR GHOSAL ◽  
PROBIR ROY

Within the type-I seesaw and in the basis where charged lepton and heavy neutrino mass matrices are real and diagonal, μτ symmetric four and three zero neutrino Yukawa textures are perturbed by lowest order μτ symmetry breaking terms. These perturbations are taken to be the most general ones for those textures. For quite small values of those symmetry breaking parameters, permitting a lowest order analysis, current best-fit ranges of neutrino mass squared differences and mixing angles are shown to be accommodable, including a value of θ13 in the observed range, provided all the light neutrinos have an inverted mass ordering.

2016 ◽  
Vol 31 (04n05) ◽  
pp. 1650002
Author(s):  
Debasish Borah

We revisit the possibility of relating lepton mixing angles with lepton mass hierarchies in a model-independent way. Guided by the existence of such relations in the quark sector, we first consider all the mixing angles, both in charged lepton and neutrino sectors to be related to the respective mass ratios. This allows us to calculate the leptonic mixing angles observed in neutrino oscillations as functions of the lightest neutrino mass. We show that for both normal and inverted hierarchical neutrino masses, this scenario does not give rise to correct leptonic mixing angles. We then show that correct leptonic mixing angles can be generated with normal hierarchical neutrino masses if the relation between mixing angle and mass ratio is restricted to 1–2 and 1–3 mixing in both charged lepton and neutrino sectors leaving the 2–3 mixing angles as free parameters. We then restrict the lightest neutrino mass as well as the difference between 2–3 mixing angles in charged lepton and neutrino sectors from the requirement of producing correct leptonic mixing angles. We constrain the lightest neutrino mass to be around 0.002 eV and leptonic Dirac CP phase [Formula: see text] such that [Formula: see text]. We also construct the leptonic mass matrices in terms of 2–3 mixing angles and lightest neutrino mass and briefly comment on the possibility of realizing texture zeros in the neutrino mass matrix.


2021 ◽  
pp. 2150132
Author(s):  
V. V. Vien

We construct a non-renormalizable [Formula: see text] model based on [Formula: see text] symmetry, whereby, neutrino mass ordering and the tiny neutrino masses are explained at tree level via type I seesaw mechanism. The model can reproduce the recent observed neutrino oscillation data in which neutrino oscillation parameters including three mixing angles [Formula: see text], Dirac CP phase plus neutrino squared-mass splittings [Formula: see text] get the best-fit values for both Normal ordering (NO) and Inverted ordering (IO). The Majorana phases are predicted to be [Formula: see text] for NO, [Formula: see text] for IO and [Formula: see text] for both NH and IO. The sum of neutrino mass and the effective neutrino mass are, respectively, predicted to be [Formula: see text] for NO while [Formula: see text] for IO and [Formula: see text] for NO while [Formula: see text] for IO which are well compatible with the most recent experimental constraints.


2021 ◽  
pp. 2150184
Author(s):  
V. V. Vien ◽  
H. N. Long ◽  
D. P. Khoi

In this paper, we study a non-renormalizable [Formula: see text] extension of the Standard Model with [Formula: see text] and [Formula: see text] symmetries accommodating the most recent neutrino data within the type-I seesaw mechanism. The two squared mass differences and three mixing angles can get the best-fit values while the leptonic Dirac CP phase is in [Formula: see text] range of the best-fit values for both normal and inverted orderings. The sum of active neutrino mass and the effective neutrino masses are, respectively, predicted to be [Formula: see text], [Formula: see text] and [Formula: see text] for normal ordering while [Formula: see text], [Formula: see text] and [Formula: see text] for inverted ordering, which are well consistent with the current experimental constraints.


2012 ◽  
Vol 27 (28) ◽  
pp. 1250159 ◽  
Author(s):  
P. M. FERREIRA ◽  
L. LAVOURA

We suggest a simple model, based on the type-I seesaw mechanism, for the lepton mass matrices. The model hinges on an Abelian symmetry which leads to mass matrices with some vanishing matrix elements. The model predicts one massless neutrino and Meμ = 0 (M is the effective light-neutrino Majorana mass matrix). We show that these predictions agree with the present experimental data if the neutrino mass spectrum is inverted, i.e. if m3 = 0, provided the Dirac phase δ is very close to maximal (±π/ 2). In the case of a normal neutrino mass spectrum, i.e. when m1 = 0, the agreement of our model with the data is imperfect — the reactor mixing angle θ13 is too small in our model. Minimal leptogenesis is not an option in our model due to the vanishing elements in the Yukawa-coupling matrices.


2014 ◽  
Vol 23 (12) ◽  
pp. 1450080 ◽  
Author(s):  
Osvaldo Civitarese ◽  
Mercedes Elisa Mosquera ◽  
María Manuela Sáez

In the present work, we discuss the effects of the inclusion of sterile–active neutrino oscillations during the production of primordial light-nuclei. We assume that the sterile neutrino mass-eigenstate might oscillate with the two lightest active neutrino mass-eigenstates, with mixing angles ϕ1 and ϕ2. We also allow a constant renormalization (represented by a parameter (ζ)) of the sterile neutrino occupation factor. Taking ζ and the mixing angles as free parameters, we have computed distribution functions of active and sterile neutrinos and primordial abundances. Using observable data we set constrains in the free parameters of the model. It is found that the data on primordial abundances are consistent with small mixing angles and with a value of ζ smaller than 0.65 at 3σ level.


2007 ◽  
Vol 16 (05) ◽  
pp. 1373-1381 ◽  
Author(s):  
TEPPEI BABA

The μ - τ symmetry can reproduce the consistent results with experimental data of θ13, and θ23 (θ13, and θ23 respectively denote the νe - ντ, and νμ - ντ, mixing angles). However, we can not address the issue of the leptonic CP violation in μ - τ symmetric models. So we add the μ - τ symmetry breaking part to include the CP violation. We characterize leptonic CP violation in terms of three phases, where one is conventional phase δ and others are additional phases ρ and γ. These δ, ρ and γ are, respectively, the phases of νe - ντ, νe - νμ and νμ - ντ mixings. The ρ and γ are redundant but the effect of ρ remains in the leptonic CP violation which is characterized by δ + ρ. The δ arises from the μ - τ symmetry breaking part of the Meμ and Meτ while ρ arises from of μ - τ symmetric part of the Meμ and Meτ, where Mij stands for ij (i,j = e,μ,τ) element of M(= [Formula: see text] for Mν being a flavor neutrino mass matrix). Moreover, θ23 can be exactly estimated to be: [Formula: see text] ( sin θ ∝ sin θ13 cos (δ + ρ)[Formula: see text], sin ϕ ∝ Mμμ - Mττ, where [Formula: see text] is the solar neutrino mass difference squared). The conditions of maximal atmospheric neutrino mixing are given by [Formula: see text] and Mμμ = Mττ,which indicate maximal Dirac CP violation.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
V. V. Vien

AbstractWe propose a non-renormalizable $$B-L$$ B - L model with $$S_{3}{\times Z_4\times Z_2}$$ S 3 × Z 4 × Z 2 symmetry which successfully accommodates the current active–sterile neutrino mixing in $$3+1$$ 3 + 1 scheme. The $$S_3$$ S 3 flavor symmetry is supplemented by $$Z_4\otimes Z_2$$ Z 4 ⊗ Z 2 symmetry to consolidate the Yukawa interaction of the model. The presence of $$S_3\otimes Z_4\otimes Z_2$$ S 3 ⊗ Z 4 ⊗ Z 2 flavour symmetry plays an important role in generating the desired structure of the neutrino mass matrix. The model can reproduce the recent observed active-neutrino neutrino oscillation data for normal ordering in which two sterile–active mixing angles $$\theta _{14, 24}$$ θ 14 , 24 get the best-fit values and the obtained values of $$\theta _{34}, \delta _{14}, \delta _{14}$$ θ 34 , δ 14 , δ 14 , the sum of neutrino mass and the effective neutrino masses are within their currently allowed ranges.


Author(s):  
J. Jones-Pérez ◽  
J. Masias ◽  
J. D. Ruiz-Álvarez

Abstract The charged current production of long-lived heavy neutrinos at the LHC can use a prompt charged lepton for triggering the measurement of the process. However, in order to fully characterize the heavy neutrino interactions, it is necessary to also probe Higgs or Z mediated neutral current production. In this case the charged lepton is not available, so other means of triggering are required. In this work, we explore the possibility of using a vector boson fusion trigger in the context of a GeV-scale Type I Seesaw model. We consider a minimal model, where both Higgs and Z-mediated contributions produce one heavy neutrino, as well as an extended model where the Higgs can decay into two heavy ones. Both scenarios are tested through displaced dilepton and displaced multitrack jet searches.


2016 ◽  
Vol 31 (06) ◽  
pp. 1650008 ◽  
Author(s):  
Rupam Kalita ◽  
Debasish Borah

In this paper, we study all possible neutrino mass matrices with one zero element and two equal nonzero elements, known as hybrid texture neutrino mass matrices. In the diagonal charged lepton basis, we consider 39 such possible cases which are consistent with the latest neutrino data. Using the two constraints on neutrino mass matrix elements imposed by hybrid textures, we numerically evaluate the neutrino parameters like the lightest neutrino mass [Formula: see text], one Dirac CP phase [Formula: see text] and two Majorana CP phases [Formula: see text], [Formula: see text] by using the global fit [Formula: see text] values of three mixing angles and two mass squared differences. We then constrain this parameter space by using the cosmological upper bound on the sum of absolute neutrino masses given by Planck experiment. We also calculate the effective neutrino mass [Formula: see text] for this region of parameter space which can have relevance in future neutrinoless double beta decay experiments. We finally discriminate between these hybrid texture mass matrices from the requirement of producing correct baryon asymmetry through type I seesaw leptogenesis. We also constrain the light neutrino parameter space as well as the lightest right-handed neutrino mass from the constraint on baryon asymmetry of the Universe from Planck experiment.


2021 ◽  
Vol 36 (07) ◽  
pp. 2150047
Author(s):  
V. V. Vien

We propose a renormalizable gauge [Formula: see text] extension of the Standard Model (SM) based on [Formula: see text] symmetry and an auxiliary [Formula: see text] symmetry which can explain the observed quark and lepton masses and mixing angles associated to normal neutrino mass ordering through type-I seesaw mechanism. The relation between the atmospheric mixing angle [Formula: see text] and the effective parameters in neutrino sector is analyzed. Two Majorana phases are predicted to be [Formula: see text] and [Formula: see text] and the model also predicts the effective neutrino mass parameters of [Formula: see text], [Formula: see text] which is well consistent with the planning of future experiments. In the quark sector, the model is predictive since it has ten effective parameters that allow to successfully reproduce the experimental values of the experimental values of the ten physical observables of the quark sector.


Sign in / Sign up

Export Citation Format

Share Document