scholarly journals D-brane on Poisson manifold and generalized geometry

2014 ◽  
Vol 29 (15) ◽  
pp. 1450089 ◽  
Author(s):  
Tsuguhiko Asakawa ◽  
Hisayoshi Muraki ◽  
Satoshi Watamura

The properties of the D-brane fluctuations are investigated using the two types of deformation of the Dirac structure, based on the B-transformation and the β-transformation, respectively. The former gives the standard gauge theory with two-form field strength. The latter gives a nonstandard gauge theory on the Poisson manifold with bivector field strength and the vector field as a gauge potential, where the gauge symmetry is a diffeomorphism generated by the Hamiltonian vector field. The map between the two gauge theories is also constructed with the help of Moser's Lemma and the Magnus expansion. We also investigate the relation to the gauge theory on the noncommutative D-branes.

2007 ◽  
Vol 22 (16n17) ◽  
pp. 2961-2976 ◽  
Author(s):  
K. SAYGILI

We obtain a Lorentzian solution for the topologically massive non-Abelian gauge theory on AdS space [Formula: see text] by means of an SU (1, 1) gauge transformation of the previously found Abelian solution. There exists a natural scale of length which is determined by the inverse topological mass ν ~ ng2. In the topologically massive electrodynamics the field strength locally determines the gauge potential up to a closed 1-form via the (anti-)self-duality equation. We introduce a transformation of the gauge potential using the dual field strength which can be identified with an Abelian gauge transformation. Then we present map [Formula: see text] including the topological mass which is the Lorentzian analog of the Hopf map. This map yields a global decomposition of [Formula: see text] as a trivial [Formula: see text] bundle over the upper portion of the pseudosphere [Formula: see text] which is the Hyperboloid model for the Lobachevski geometry. This leads to a reduction of the Abelian field equation onto [Formula: see text] using a global section of the solution on [Formula: see text]. Then we discuss the integration of the field equation using the Archimedes map [Formula: see text]. We also present a brief discussion of the holonomy of the gauge potential and the dual field strength on [Formula: see text].


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Maxim Kurkov ◽  
Patrizia Vitale

Abstract We construct a family of four-dimensional noncommutative deformations of U(1) gauge theory following a general scheme, recently proposed in JHEP 08 (2020) 041 for a class of coordinate-dependent noncommutative algebras. This class includes the $$ \mathfrak{su} $$ su (2), the $$ \mathfrak{su} $$ su (1, 1) and the angular (or λ-Minkowski) noncommutative structures. We find that the presence of a fourth, commutative coordinate x0 leads to substantial novelties in the expression for the deformed field strength with respect to the corresponding three-dimensional case. The constructed field theoretical models are Poisson gauge theories, which correspond to the semi-classical limit of fully noncommutative gauge theories. Our expressions for the deformed gauge transformations, the deformed field strength and the deformed classical action exhibit flat commutative limits and they are exact in the sense that all orders in the deformation parameter are present. We review the connection of the formalism with the L∞ bootstrap and with symplectic embeddings, and derive the L∞-algebra, which underlies our model.


Author(s):  
Michael Kachelriess

After reviewing electrodynamics as the special case of an abelian gauge theory, this local symmetry is generalised to non-abelian gauge theories. The curvature of space-time is introduced as analogue of the non-abelian field-strength. Non-abelian gauge theories are quantised using the Fadeev–Popov method and the resulting Feynman rules are derived.


Author(s):  
Jean Zinn-Justin

This chapter is devoted Abelian gauge theory, whose physical realization is quantum electrodynamics (QED). Since many textbooks deal extensively with QED, the chapter focusses mainly on the more formal properties of Abelian gauge theories. First, the free massive vector field is considered, because its quantization does not immediately follow from the quantization of the scalar field, and thus requires a specific analysis. If the vector field is coupled to a conserved current, it is possible to construct a field theory with fermion matter renormalizable in four dimensions. In this case, a massless vector limit can be defined, and the corresponding field theory is gauge invariant. To directly quantize a gauge theory starting directly from first principles, it is necessary to introduce gauge fixing. The formal equivalence between different gauges is established. The Abelian gauge symmetry, broken by gauge-fixing terms, leads to a set of Ward–Takahashi (WT) identities which are used to prove the renormalizability of the quantum field theory (QFT). Renormalization group (RG) equations follow, and the RG β-function is calculated at leading order. As an introduction to the Standard Model of particle physics, the Abelian Landau–Ginzburg–Higgs model is described, where the gauge field is coupled to a complex scalar field with a non-zero expectation value, leading to a model that classically also describes a superconductor in a magnetic field.


Author(s):  
Kazutoshi Ohta ◽  
Norisuke Sakai

Abstract We study the moduli space volume of BPS vortices in quiver gauge theories on compact Riemann surfaces. The existence of BPS vortices imposes constraints on the quiver gauge theories. We show that the moduli space volume is given by a vev of a suitable cohomological operator (volume operator) in a supersymmetric quiver gauge theory, where BPS equations of the vortices are embedded. In the supersymmetric gauge theory, the moduli space volume is exactly evaluated as a contour integral by using the localization. Graph theory is useful to construct the supersymmetric quiver gauge theory and to derive the volume formula. The contour integral formula of the volume (generalization of the Jeffrey-Kirwan residue formula) leads to the Bradlow bounds (upper bounds on the vorticity by the area of the Riemann surface divided by the intrinsic size of the vortex). We give some examples of various quiver gauge theories and discuss properties of the moduli space volume in these theories. Our formula are applied to the volume of the vortex moduli space in the gauged non-linear sigma model with CPN target space, which is obtained by a strong coupling limit of a parent quiver gauge theory. We also discuss a non-Abelian generalization of the quiver gauge theory and “Abelianization” of the volume formula.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Guido Festuccia ◽  
Anastasios Gorantis ◽  
Antonio Pittelli ◽  
Konstantina Polydorou ◽  
Lorenzo Ruggeri

Abstract We construct a large class of gauge theories with extended supersymmetry on four-dimensional manifolds with a Killing vector field and isolated fixed points. We extend previous results limited to super Yang-Mills theory to general $$ \mathcal{N} $$ N = 2 gauge theories including hypermultiplets. We present a general framework encompassing equivariant Donaldson-Witten theory and Pestun’s theory on S4 as two particular cases. This is achieved by expressing fields in cohomological variables, whose features are dictated by supersymmetry and require a generalized notion of self-duality for two-forms and of chirality for spinors. Finally, we implement localization techniques to compute the exact partition function of the cohomological theories we built up and write the explicit result for manifolds with diverse topologies.


2009 ◽  
Vol 24 (27) ◽  
pp. 5051-5120
Author(s):  
CHANGHYUN AHN

Starting from an [Formula: see text] supersymmetric electric gauge theory with the multiple product gauge group and the bifundamentals, we apply Seiberg dual to each gauge group, obtain the [Formula: see text] supersymmetric dual magnetic gauge theories with dual matters including the gauge singlets. Then we describe the intersecting brane configurations, where there are NS-branes and D4-branes (and anti-D4-branes), of type IIA string theory corresponding to the meta-stable nonsupersymmetric vacua of this gauge theory. We also discuss the case where the orientifold 4-planes are added into the above brane configuration. Next, by adding an orientifold 6-plane, we apply to an [Formula: see text] supersymmetric electric gauge theory with the multiple product gauge group (where a single symplectic or orthogonal gauge group is present) and the bifundamentals. Finally, we describe the other cases where the orientifold 6-plane intersects with NS-brane.


2011 ◽  
Vol 26 (37) ◽  
pp. 2813-2821
Author(s):  
PATRICIO GAETE

We consider the static quantum potential for a gauge theory which includes a light massive vector field interacting with the familiar U (1) QED photon via a Chern–Simons-like coupling, by using the gauge-invariant, but path-dependent, variables formalism. An exactly screening phase is then obtained, which displays a marked departure of a qualitative nature from massive axionic electrodynamics. The above static potential profile is similar to that encountered in axionic electrodynamics consisting of a massless axion-like field, as well as to that encountered in the coupling between the familiar U (1) QED photon and a second massive gauge field living in the so-called U (1)h hidden-sector, inside a superconducting box.


2002 ◽  
Vol 17 (16) ◽  
pp. 2191-2210 ◽  
Author(s):  
C. BIZDADEA ◽  
E. M. CIOROIANU ◽  
S. O. SALIU

Consistent couplings among a set of scalar fields, two types of one-forms and a system of two-forms are investigated in the light of the Hamiltonian BRST cohomology, giving a four-dimensional nonlinear gauge theory. The emerging interactions deform the first-class constraints, the Hamiltonian gauge algebra, as well as the reducibility relations.


1989 ◽  
Vol 04 (14) ◽  
pp. 1343-1353 ◽  
Author(s):  
T.E. CLARK ◽  
C.-H. LEE ◽  
S.T. LOVE

The supersymmetric extensions of anti-symmetric tensor gauge theories and their associated tensor gauge symmetry transformations are constructed. The classical equivalence between such supersymmetric tensor gauge theories and supersymmetric non-linear sigma models is established. The global symmetry of the supersymmetric tensor gauge theory is gauged and the locally invariant action is obtained. The supercurrent on the Kähler manifold is found in terms of the supersymmetric tensor gauge field.


Sign in / Sign up

Export Citation Format

Share Document