scholarly journals Quantum Kerr(Newman) degenerate stringy vacua in 4D on a non-BPS brane

2014 ◽  
Vol 29 (29) ◽  
pp. 1450164 ◽  
Author(s):  
Sunita Singh ◽  
K. Priyabrat Pandey ◽  
Abhishek K. Singh ◽  
Supriya Kar

We investigate some of the quantum gravity effects on a vacuum created pair of [Formula: see text]-brane by a nonlinear U(1) gauge theory on a D4-brane. In particular, we obtain a four-dimensional quantum Kerr–(Newman) black hole in an effective torsion curvature formalism sourced by a two form dynamics in the worldvolume of a D4-brane on S1. Interestingly, the event horizon is found to be independent of a nonlinear electric charge and the 4D quantum black hole is shown to describe degenerate vacua in string theory. We show that the quantum Kerr brane universe possesses its origin in a de Sitter vacuum. In a nearly S2-symmetric limit, the Kerr geometries may seen to describe a Schwarzschild and Reissner–Nordstrom quantum black holes. It is argued that a quantum Reissner–Nordstrom tunnels to a large class of degenerate Schwarzschild vacua. In a low energy limit, the nonlinear electric charge becomes significant at the expense of the degeneracies. In the limit, the quantum geometries may identify with the semiclassical black holes established in Einstein gravity. Analysis reveals that a quantum geometry on a vacuum created D3-brane universe may be described by a low energy perturbative string vacuum in presence of a nonperturbative quantum correction.

Universe ◽  
2019 ◽  
Vol 5 (12) ◽  
pp. 225 ◽  
Author(s):  
Sergey I. Kruglov

A new modified Hayward metric of magnetically charged non-singular black hole spacetime in the framework of nonlinear electrodynamics is constructed. When the fundamental length introduced, characterising quantum gravity effects, vanishes, one comes to the general relativity coupled with the Bronnikov model of nonlinear electrodynamics. The metric can have one (an extreme) horizon, two horizons of black holes, or no horizons corresponding to the particle-like solution. Corrections to the Reissner–Nordström solution are found as the radius approaches infinity. As r → 0 the metric has a de Sitter core showing the absence of singularities, the asymptotic of the Ricci and Kretschmann scalars are obtained and they are finite everywhere. The thermodynamics of black holes, by calculating the Hawking temperature and the heat capacity, is studied. It is demonstrated that phase transitions take place when the Hawking temperature possesses the maximum. Black holes are thermodynamically stable at some range of parameters.


2018 ◽  
Vol 33 (33) ◽  
pp. 1850190 ◽  
Author(s):  
Aloke Kumar Sinha

We have already derived the criteria for thermal stability of charged rotating quantum black holes, for horizon areas that are large relative to the Planck area. The derivation is done by using results of loop quantum gravity and equilibrium statistical mechanics of the grand canonical ensemble. We have also showed that in four-dimensional spacetime, quantum AdS Kerr–Newman black hole and asymptotically AdS dyonic black hole with electric and magnetic charge are thermally stable within certain range of its parameters. In this paper, the expectation values of fluctuations and correlations among horizon area, electric charge and angular momentum (magnetic charge) of these black holes are calculated within their range of stability. Interestingly, it is found that leading order fluctuations of electric charge and angular momentum (magnetic charge), in large horizon area limit, are independent of the values of electric charge and angular momentum (magnetic charge) at equilibrium.


Author(s):  
S. I. Kruglov

A modified Hayward metric of magnetically charged black hole space–time based on rational nonlinear electrodynamics with the Lagrangian [Formula: see text] is considered. We introduce the fundamental length, characterizing quantum gravity effects. If the fundamental length vanishes the general relativity coupling to rational nonlinear electrodynamics is recovered. We obtain corrections to the Reissner–Nordström solution as the radius approaches infinity. The metric possesses a de Sitter core without singularities as [Formula: see text]. The Hawking temperature and the heat capacity are calculated. It was shown that phase transitions occur and black holes are thermodynamically stable at some event horizon radii. We demonstrate that curvature invariants are bounded and the limiting curvature conjecture takes place.


Universe ◽  
2019 ◽  
Vol 5 (7) ◽  
pp. 163 ◽  
Author(s):  
Irina Dymnikova ◽  
Kirill Kraav

We study shadows of regular rotating black holes described by the axially symmetric solutions asymptotically Kerr for a distant observer, obtained from regular spherical solutions of the Kerr–Schild class specified by T t t = T r r ( p r = − ε ) . All regular solutions obtained with the Newman–Janis algorithm belong to this class. Their basic generic feature is the de Sitter vacuum interior. Information about the interior content of a regular rotating de Sitter-Kerr black hole can be in principle extracted from observation of its shadow. We present the general formulae for description of shadows for this class of regular black holes, and numerical analysis for two particular regular black hole solutions. We show that the shadow of a de Sitter-Kerr black hole is typically smaller than that for the Kerr black hole, and the difference depends essentially on the interior density and on the pace of its decreasing.


Universe ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. 101 ◽  
Author(s):  
Irina Dymnikova

We overview the fundamental roles of the de Sitter vacuum in cosmology where it is responsible for powering the early inflationary stage(s) and the present accelerated expansion, in black hole physics where it provides the existence of a wide class of regular black holes and self-gravitating solitons replacing naked singularities, and in particle physics where it ensures the intrinsic relation of the Higgs mechanism with gravity and spacetime symmetry breaking.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Tomas Andrade ◽  
Christiana Pantelidou ◽  
Julian Sonner ◽  
Benjamin Withers

Abstract General relativity governs the nonlinear dynamics of spacetime, including black holes and their event horizons. We demonstrate that forced black hole horizons exhibit statistically steady turbulent spacetime dynamics consistent with Kolmogorov’s theory of 1941. As a proof of principle we focus on black holes in asymptotically anti-de Sitter spacetimes in a large number of dimensions, where greater analytic control is gained. We focus on cases where the effective horizon dynamics is restricted to 2+1 dimensions. We also demonstrate that tidal deformations of the horizon induce turbulent dynamics. When set in motion relative to the horizon a deformation develops a turbulent spacetime wake, indicating that turbulent spacetime dynamics may play a role in binary mergers and other strong-field phenomena.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Mehrdad Mirbabayi

Abstract We propose a Euclidean preparation of an asymptotically AdS2 spacetime that contains an inflating dS2 bubble. The setup can be embedded in a four dimensional theory with a Minkowski vacuum and a false vacuum. AdS2 approximates the near horizon geometry of a two-sided near-extremal Reissner-Nordström black hole, and the two sides can connect to the same Minkowski asymptotics to form a topologically nontrivial worm- hole geometry. Likewise, in the false vacuum the near-horizon geometry of near-extremal black holes is approximately dS2 times 2-sphere. We interpret the Euclidean solution as describing the decay of an excitation inside the wormhole to a false vacuum bubble. The result is an inflating region inside a non-traversable asymptotically Minkowski wormhole.


2002 ◽  
Vol 11 (10) ◽  
pp. 1537-1540 ◽  
Author(s):  
SAMIR D. MATHUR

The entropy and information puzzles arising from black holes cannot be resolved if quantum gravity effects remain confined to a microscopic scale. We use concrete computations in nonperturbative string theory to argue for three kinds of nonlocal effects that operate over macroscopic distances. These effects arise when we make a bound state of a large number of branes, and occur at the correct scale to resolve the paradoxes associated with black holes.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Chang Liu ◽  
Yan-Gang Miao ◽  
Yu-Mei Wu ◽  
Yu-Hao Zhang

We suggest a quantum black hole model that is based on an analogue to hydrogen atoms. A self-regular Schwarzschild-AdS black hole is investigated, where the mass density of the extreme black hole is given by the probability density of the ground state of hydrogen atoms and the mass densities of nonextreme black holes are given by the probability densities of excited states with no angular momenta. Such an analogue is inclined to adopt quantization of black hole horizons. In this way, the total mass of black holes is quantized. Furthermore, the quantum hoop conjecture and the Correspondence Principle are discussed.


2011 ◽  
Vol 26 (14) ◽  
pp. 999-1007 ◽  
Author(s):  
JERZY MATYJASEK ◽  
KATARZYNA ZWIERZCHOWSKA

Perturbative solutions to the fourth-order gravity describing spherically-symmetric, static and electrically charged black hole in an asymptotically de Sitter universe is constructed and discussed. Special emphasis is put on the lukewarm configurations, in which the temperature of the event horizon equals the temperature of the cosmological horizon.


Sign in / Sign up

Export Citation Format

Share Document