scholarly journals Optimal configurations of the Deep Underground Neutrino Experiment

2016 ◽  
Vol 31 (07) ◽  
pp. 1650020 ◽  
Author(s):  
Vernon Barger ◽  
Atri Bhattacharya ◽  
Animesh Chatterjee ◽  
Raj Gandhi ◽  
Danny Marfatia ◽  
...  

We perform a comprehensive study of the ability of the Deep Underground Neutrino Experiment (DUNE) to answer outstanding questions in the neutrino sector. We consider the sensitivities to the mass hierarchy, the octant of [Formula: see text] and to CP violation using data from beam and atmospheric neutrinos. We evaluate the dependencies on the precision with which [Formula: see text] will be measured by reactor experiments, on the detector size, beam power and exposure time, on detector magnetization, and on the systematic uncertainties achievable with and without a near detector. We find that a 35 kt far detector in DUNE with a near detector will resolve the eightfold degeneracy that is intrinsic to long baseline experiments and will meet the primary goals of oscillation physics that it is designed for.

Author(s):  
B. Abi ◽  
R. Acciarri ◽  
M. A. Acero ◽  
G. Adamov ◽  
D. Adams ◽  
...  

AbstractThe sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5$$\sigma $$ σ , for all $$\delta _{\mathrm{CP}}$$ δ CP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3$$\sigma $$ σ (5$$\sigma $$ σ ) after an exposure of 5 (10) years, for 50% of all $$\delta _{\mathrm{CP}}$$ δ CP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to $$\sin ^{2} 2\theta _{13}$$ sin 2 2 θ 13 to current reactor experiments.


Instruments ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 22
Author(s):  
Alexander Deisting ◽  
Abigail Waldron ◽  
Edward Atkin ◽  
Gary Barker ◽  
Anastasia Basharina-Freshville ◽  
...  

The measurements of proton–nucleus scattering and high resolution neutrino–nucleus interaction imaging are key in reducing neutrino oscillation systematic uncertainties in future experiments. A High Pressure Time Projection Chamber (HPTPC) prototype has been constructed and operated at the Royal Holloway University of London and CERN as a first step in the development of a HPTPC that is capable of performing these measurements as part of a future long-baseline neutrino oscillation experiment, such as the Deep Underground Neutrino Experiment. In this paper, we describe the design and operation of the prototype HPTPC with an argon based gas mixture. We report on the successful hybrid charge and optical readout using four CCD cameras of signals from 241Am sources.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Maury Goodman

The Deep Underground Neutrino Experiment (DUNE) is a worldwide effort to construct a next-generation long-baseline neutrino experiment based at the Fermi National Accelerator Laboratory. It is a merger of previous efforts and other interested parties to build, operate, and exploit a staged 40 kt liquid argon detector at the Sanford Underground Research Facility 1300 km from Fermilab, and a high precision near detector, exposed to a 1.2 MW, tunableνbeam produced by the PIP-II upgrade by 2024, evolving to a power of 2.3 MW by 2030. The neutrino oscillation physics goals and the status of the collaboration and project are summarized in this paper.


2014 ◽  
Vol 2014 (5) ◽  
Author(s):  
S.K. Agarwalla ◽  
◽  
L. Agostino ◽  
M. Aittola ◽  
A. Alekou ◽  
...  

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Nishat Fiza ◽  
Mehedi Masud ◽  
Manimala Mitra

Abstract The various global analyses of available neutrino oscillation data indicate the presence of the standard 3 + 0 neutrino oscillation picture. However, there are a few short baseline anomalies that point to the possible existence of a fourth neutrino (with mass in the eV-scale), essentially sterile in nature. Should sterile neutrino exist in nature and its presence is not taken into consideration properly in the analyses of neutrino data, the interference terms arising due to the additional CP phases in presence of a sterile neutrino can severely impact the physics searches in long baseline (LBL) neutrino oscillation experiments. In the current work we consider one light (eV-scale) sterile neutrino and probe all the three CP phases (δ13, δ24, δ34) in the context of the upcoming Deep Underground Neutrino Experiment (DUNE) and also estimate how the results improve when data from NOvA, T2K and T2HK are added in the analysis. We illustrate the ∆χ2 correlations of the CP phases among each other, and also with the three active-sterile mixing angles. Finally, we briefly illustrate how the relevant parameter spaces in the context of neutrinoless double beta decay get modified in light of the bounds in presence of a light sterile neutrino.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Jürgen Brunner

IceCube and ANTARES are the world-largest neutrino telescopes. They are successfully taking data, producing a wealth of scientific results. Whereas their main goal is the detection of cosmic neutrinos with energies in the TeV-PeV range, both have demonstrated their capability to measure neutrino oscillations by studying atmospheric neutrinos with energies of 10–50 GeV. After recalling the methods of these measurements and the first published results of these searches, the potential of existing, and planned low-energy extensions of IceCube and KM3Net are discussed. These new detectors will be able to improve the knowledge of the atmospheric neutrino oscillation parameters, and in particular they might help to understand the neutrino mass hierarchy. Such studies, which use atmospheric neutrinos, could be complemented by measurements in a long-baseline neutrino beam, which is discussed as a long-term future option.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
P. S. Bhupal Dev ◽  
Bhaskar Dutta ◽  
Kevin J. Kelly ◽  
Rabindra N. Mohapatra ◽  
Yongchao Zhang

Abstract The low-energy U(1)B−L gauge symmetry is well-motivated as part of beyond Standard Model physics related to neutrino mass generation. We show that a light B − L gauge boson Z′ and the associated U(1)B−L-breaking scalar φ can both be effectively searched for at high-intensity facilities such as the near detector complex of the Deep Underground Neutrino Experiment (DUNE). Without the scalar φ, the Z′ can be probed at DUNE up to mass of 1 GeV, with the corresponding gauge coupling gBL as low as 10−9. In the presence of the scalar φ with gauge coupling to Z′, the DUNE capability of discovering the gauge boson Z′ can be significantly improved, even by one order of magnitude in gBL, due to additional production from the decay φ → Z′Z′. The DUNE sensitivity is largely complementary to other long-lived Z′ searches at beam-dump facilities such as FASER and SHiP, as well as astrophysical and cosmological probes. On the other hand, the prospects of detecting φ itself at DUNE are to some extent weakened in presence of Z′, compared to the case without the gauge interaction.


Sign in / Sign up

Export Citation Format

Share Document