scholarly journals Comments on the adiabatic theorem

2018 ◽  
Vol 33 (24) ◽  
pp. 1850140 ◽  
Author(s):  
Dmitrii A. Trunin

We consider the simplest example of a nonstationary quantum system which is quantum mechanical oscillator with varying frequency and [Formula: see text] self-interaction. We calculate loop corrections to the Keldysh, retarded/advanced propagators and vertices using Schwinger–Keldysh diagrammatic technique and show that there is no physical secular growth of the loop corrections in the cases of constant and adiabatically varying frequency. This fact corresponds to the well-known adiabatic theorem in quantum mechanics. However, in the case of nonadiabatically varying frequency we obtain strong IR corrections to the Keldysh propagator which come from the “sunset” diagrams, grow with time indefinitely and indicate energy pumping into the system. It reveals itself via the change in time of the level population and of the anomalous quantum average.

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 75
Author(s):  
Florio M. Ciaglia ◽  
Fabio Di Di Cosmo ◽  
Alberto Ibort ◽  
Giuseppe Marmo ◽  
Luca Schiavone ◽  
...  

This paper begins the study of the relation between causality and quantum mechanics, taking advantage of the groupoidal description of quantum mechanical systems inspired by Schwinger’s picture of quantum mechanics. After identifying causal structures on groupoids with a particular class of subcategories, called causal categories accordingly, it will be shown that causal structures can be recovered from a particular class of non-selfadjoint class of algebras, known as triangular operator algebras, contained in the von Neumann algebra of the groupoid of the quantum system. As a consequence of this, Sorkin’s incidence theorem will be proved and some illustrative examples will be discussed.


Author(s):  
Duncan G. Steel

This is an introduction to the field, providing a brief discussion of why quantum physics is creating new opportunities in modern technology. Quantum has always been a part of the discussion on the behavior of semiconductors for transistors. But the measurements were on classical parameters. Now measurements are being made on quantum mechanical observables. This means that one of the most important features of quantum mechanics, namely the principle of superposition can be used to create entirely new devices. It is the principle of superposition, where a switch can be on and off at the same in a quantum system, that leads to amazing results of quantum entanglement of observables. The chapter sets the stage for the student to learn that the usual way of thinking about things in the classical world, such as the charge on a capacitor as a function of time, is no longer viable in a quantum system.


2019 ◽  
Author(s):  
Joshua Horton ◽  
Alice Allen ◽  
Daniel Cole

<div><div><div><p>The quantum mechanical bespoke (QUBE) force field is used to retrospectively calculate the relative binding free energy of a series of 17 flexible inhibitors of p38α MAP kinase. The size and flexibility of the chosen molecules represent a stringent test of the derivation of force field parameters from quantum mechanics, and enhanced sampling is required to reduce the dependence of the results on the starting structure. Competitive accuracy with a widely-used biological force field is achieved, indicating that quantum mechanics derived force fields are approaching the accuracy required to provide guidance in prospective drug discovery campaigns.</p></div></div></div>


1998 ◽  
Vol 13 (05) ◽  
pp. 347-351 ◽  
Author(s):  
MURAT ÖZER

We attempt to treat the very early Universe according to quantum mechanics. Identifying the scale factor of the Universe with the width of the wave packet associated with it, we show that there cannot be an initial singularity and that the Universe expands. Invoking the correspondence principle, we obtain the scale factor of the Universe and demonstrate that the causality problem of the standard model is solved.


2011 ◽  
Vol 20 (05) ◽  
pp. 729-743 ◽  
Author(s):  
JOÃO PAULO M. PITELLI ◽  
PATRICIO S. LETELIER

We review the mathematical framework necessary to understand the physical content of quantum singularities in static spacetimes. We present many examples of classical singular spacetimes and study their singularities by using wave packets satisfying Klein–Gordon and Dirac equations. We show that in many cases the classical singularities are excluded when tested by quantum particles but unfortunately there are other cases where the singularities remain from the quantum mechanical point of view. When it is possible we also find, for spacetimes where quantum mechanics does not exclude the singularities, the boundary conditions necessary to turn the spatial portion of the wave operator to be self-adjoint and emphasize their importance to the interpretation of quantum singularities.


General formulas for estimating the errors in quantum-mechanical calculations are given in the formalism of density matrices. Some properties of the traces of matrices are used to simplify the estimating and to indicate a way of obtaining a better approximation. It is shown that the simultaneous correction of all the equations to be fulfilled leads in most cases to a faster convergence than the exact fulfilment of some of the equations and approximating stepwise to some of the others. The corrective formulas contain only direct operations of the matrices occurring and so they are advantageous in computer applications. In the last section a ‘subjective error’ definition is given and by taking into account the weight of the errors of the several equations a faster convergence and a single error quantity is obtained. Some special applications of the method will be published later.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Frank Wilczek

Quantum mechanics is nearly one hundred years old; and yet the challenge it presents to the imagination is so great that scientists are still coming to terms with some of its most basic implications. Theoretical insights and recent experimental results in anyon physics are leading physicists to revise and expand their ideas about what quantum-mechanical particles are and how they behave.


Author(s):  
Anurag Chapagain

Abstract: It is a well-known fact in physics that classical mechanics describes the macro-world, and quantum mechanics describes the atomic and sub-atomic world. However, principles of quantum mechanics, such as Heisenberg’s Uncertainty Principle, can create visible real-life effects. One of the most commonly known of those effects is the stability problem, whereby a one-dimensional point base object in a gravity environment cannot remain stable beyond a time frame. This paper expands the stability question from 1- dimensional rod to 2-dimensional highly symmetrical structures, such as an even-sided polygon. Using principles of classical mechanics, and Heisenberg’s uncertainty principle, a stability equation is derived. The stability problem is discussed both quantitatively as well as qualitatively. Using the graphical analysis of the result, the relation between stability time and the number of sides of polygon is determined. In an environment with gravity forces only existing, it is determined that stability increases with the number of sides of a polygon. Using the equation to find results for circles, it was found that a circle has the highest degree of stability. These results and the numerical calculation can be utilized for architectural purposes and high-precision experiments. The result is also helpful for minimizing the perception that quantum mechanical effects have no visible effects other than in the atomic, and subatomic world. Keywords: Quantum mechanics, Heisenberg Uncertainty principle, degree of stability, polygon, the highest degree of stability


2018 ◽  
Vol 4 (1) ◽  
pp. 47-55
Author(s):  
Timothy Brian Huber

The harmonic oscillator is a quantum mechanical system that represents one of the most basic potentials. In order to understand the behavior of a particle within this system, the time-independent Schrödinger equation was solved; in other words, its eigenfunctions and eigenvalues were found. The first goal of this study was to construct a family of single parameter potentials and corresponding eigenfunctions with a spectrum similar to that of the harmonic oscillator. This task was achieved by means of supersymmetric quantum mechanics, which utilizes an intertwining operator that relates a known Hamiltonian with another whose potential is to be built. Secondly, a generalization of the technique was used to work with the time-dependent Schrödinger equation to construct new potentials and corresponding solutions.


Author(s):  
Alireza Jamali

It is known since Madelung that the Schr&ouml;dinger equation can be thought of as governing the evolution of an incompressible fluid, but the current theory fails to mathematically express this incompressibility in terms of the wavefunction without facing problem. In this paper after showing that the current definition of quantum-mechanical momentum as a linear operator is neither the most general nor a necessary result of the de Broglie hypothesis, a new definition is proposed that can yield both a meaningful mathematical condition for the incompressibility of the Madelung fluid, and nonlinear generalisations of Schr&ouml;dinger and Klein-Gordon equations. The derived equations satisfy all conditions that are expected from a proper generalisation: simplification to their linear counterparts by a well-defined dynamical condition; Galilean and Lorentz invariance (respectively); and signifying only rays in the Hilbert space.


Sign in / Sign up

Export Citation Format

Share Document