scholarly journals Ruppeiner geometry, phase transitions and microstructures of black holes in massive gravity

2020 ◽  
Vol 35 (22) ◽  
pp. 2050120 ◽  
Author(s):  
Pavan Kumar Yerra ◽  
Chandrasekhar Bhamidipati

Using the new normalized thermodynamic scalar curvature, we investigate the microstructures and phase transitions of black holes in massive gravity for horizons of various topologies. We find that the graviton mass enhances the repulsive interactions of small black holes and weakens the attractive interactions of large black holes, with possibility of new repulsive regions for microstructures in phase space. In addition, the repulsive interactions of small black hole are strong for spherical topology, followed by flat and hyperbolic topology; while, the attractive interactions of large black hole are strong for hyperbolic topology, followed by flat and weakest for spherical topology.

2019 ◽  
Vol 28 (09) ◽  
pp. 1950113 ◽  
Author(s):  
Bin Liang ◽  
Shao-Wen Wei ◽  
Yu-Xiao Liu

Using the quasinormal modes of a massless scalar perturbation, we investigate the small/large black hole phase transition in the Lorentz symmetry breaking massive gravity. We mainly focus on two issues: (i) the sign change of slope of the quasinormal mode frequencies in the complex-[Formula: see text] diagram; (ii) the behaviors of the imaginary part of the quasinormal mode frequencies along the isobaric or isothermal processes. For the first issue, our result shows that, at low fixed temperature or pressure, the phase transition can be probed by the sign change of slope. While increasing the temperature or pressure to certain values near the critical point, there will appear the deflection point, which indicates that such method may not be appropriate to test the phase transition. In particular, the behavior of the quasinormal mode frequencies for the small and large black holes tend to be the same at the critical point. For the second issue, it is shown that the nonmonotonic behavior is observed only when the small/large black hole phase transition occurs. Therefore, this property can provide us with an additional method to probe the phase transition through the quasinormal modes.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
De-Cheng Zou ◽  
Ming Zhang ◽  
Chao Wu ◽  
Rui-Hong Yue

We construct analytical charged anti-de Sitter (AdS) black holes surrounded by perfect fluids in four dimensional Rastall gravity. Then, we discuss the thermodynamics and phase transitions of charged AdS black holes immersed in regular matter like dust and radiation, or exotic matter like quintessence, ΛCDM type, and phantom fields. Surrounded by phantom field, the charged AdS black hole demonstrates a new phenomenon of reentrant phase transition (RPT) when the parameters Q, Np, and ψ satisfy some certain condition, along with the usual small/large black hole (SBH/LBH) phase transition for the surrounding dust, radiation, quintessence, and cosmological constant fields.


2019 ◽  
Vol 34 (09) ◽  
pp. 1950063
Author(s):  
Parthapratim Pradhan

We study the extended phase-space thermodynamics of black holes in massive gravity. Particularly, we examine the critical behavior of this black hole using the extended phase-space formalism. Extended phase-space can be defined as one in which the cosmological constant should be treated as a thermodynamic pressure and its conjugate variable as a thermodynamic volume. In this phase-space, we derive the black hole equation of state, the critical pressure, the critical volume and the critical temperature at the critical point. We also derive the critical ratio of this black hole. Moreover, we derive the black hole reduced equation of state in terms of the reduced pressure, the reduced volume and the reduced temperature. Furthermore, we examine the Ehrenfest equations of black holes in massive gravity in the extended phase-space at the critical point. We show that the Ehrenfest equations are satisfied on this black hole and the black hole encounters a second-order phase transition at the critical point in the said phase-space. This is re-examined by evaluating the Pregogine–Defay ratio [Formula: see text]. We determine the value of this ratio is [Formula: see text]. The outcome of this study is completely analogous to the nature of liquid–gas phase transition at the critical point. This investigation also further gives us the profound understanding between the black hole of massive gravity with the liquid–gas system.


2016 ◽  
Vol 31 (37) ◽  
pp. 1650199 ◽  
Author(s):  
Hang Liu ◽  
Xin-He Meng

In this paper, we investigate the P–V criticality and phase transition of charged accelerating AdS black holes in the extended thermodynamic phase–space in analogy between black hole system and van der Waals liquid–gas system, where the cosmological constant [Formula: see text] is treated as a thermodynamical variable interpreted as dynamic pressure and its conjugate quantity is the thermodynamic volume of the black holes. When the electric charge vanishes, we find that no P–V criticality will appear but the Hawking–Page-like phase transition will be present, just as what Schwarzschild-AdS black holes behave like. For the charged case, the P–V criticality appears and the accelerating black holes will undergo a small black hole/large phase transition under the condition that the acceleration parameter A and the horizon radius rh meet a certain simple relation Arh = a, where a is a constant in our discussion. To make P–V criticality appear, there exists an upper bounds for constant a. When P–V criticality appears, we calculate the critical pressure P[Formula: see text], critical temperature T[Formula: see text] and critical specific volume r[Formula: see text], and we find that [Formula: see text] is an universal number.


Author(s):  
Muhammad Yasir ◽  
Kazuharu Bamba ◽  
Abdul Jawad

We consider the Hairy black hole of dimensionally continued gravity with power-Yang–Mills magnetic source and Lorentz symmetry violating Bañados, Teitelboim and Zanelli (BTZ) black hole in massive gravity. We utilize the general form of first law of black hole thermodynamics and compute different thermodynamic quantities. Keeping in mind the importance of negative cosmological constant [Formula: see text], we derive corresponding equations of state and discuss the phase transitions which is comparable with chemical Van der Waals fluid. We also find out the critical points and observe that system exhibits first-order small as well as large black holes phase transitions.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ming Zhang ◽  
De-Cheng Zou ◽  
Rui-Hong Yue

Motivated by recent developments of black hole thermodynamics in de Rham, Gabadadze, and Tolley (dRGT) massive gravity, we study the critical behaviors of topological Anti-de Sitter (AdS) black holes in the presence of Born-Infeld nonlinear electrodynamics. Here the cosmological constant appears as a dynamical pressure of the system and its corresponding conjugate quantity is interpreted as thermodynamic volume. This shows that, besides the Van der Waals-like SBH/LBH phase transitions, the so-called reentrant phase transition (RPT) appears in four-dimensional space-time when the coupling coefficients cim2 of massive potential and Born-Infeld parameter b satisfy some certain conditions. In addition, we also find the triple critical points and the small/intermediate/large black hole phase transitions for d=5.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yun Soo Myung

We investigate thermodynamics of the BTZ black hole in new massive gravity explicitly. Form2l2>1/2withm2being the mass parameter of fourth-order terms andl2AdS3curvature radius, the Hawking-Page phase transition occurs between the BTZ black hole and AdS (thermal) soliton. Form2l2<1/2, however, this transition unlikely occurs but a phase transition between the BTZ black hole and the massless BTZ black hole is possible to occur. We may call the latter the inverse Hawking-Page phase transition and this transition is favored in the new massive gravity.


Author(s):  
Andrew W Beckwith

We are using information from a paper deriving a Lorentz-violating energy-momentum relation entailing an exact mo_mentum cutof as stated by G. Salesi . Salesi in his work allegedly defines Pre Planckian physics, whereas we restrict our given application to GW generation and DE formation in the first 10^-39s to 10^-33s or so seconds in the early universe. This procedure is inacted due to an earlier work whereas referees exhibited puzzlement as to the physical mechanism for release of Gravitons in the very early universe. The calculation is meant to be complementary to work done in the Book &ldquo;Dark Energy&rdquo; by M. Li, X-D. Li, and Y. Wang, and also a calculation for Black hole destruction as outlined by Karen Freeze, et. al. The GW generation will be when there is sufficient early universe density so as to break apart Relic Black holes but we claim that this destruction is directly linked to a Lorentz violating energy-momentum G. Salesi derived, which we adopt, with a mass m added in the G. Salesi energy momentum results proportional to a tiny graviton mass, times the number of gravitons in the first 10^-43 seconds


Sign in / Sign up

Export Citation Format

Share Document