scholarly journals Lorentz invariance of basis tensor gauge theory

Author(s):  
E. Basso ◽  
Daniel J. H. Chung

Basis tensor gauge theory (BTGT) is a vierbein analog reformulation of ordinary gauge theories in which the vierbein field describes the Wilson line. After a brief review of the BTGT, we clarify the Lorentz group representation properties associated with the variables used for its quantization. In particular, we show that starting from an SO(1,3) representation satisfying the Lorentz-invariant U(1,3) matrix constraints, BTGT introduces a Lorentz frame choice to pick the Abelian group manifold generated by the Cartan subalgebra of U(1,3) for the convenience of quantization even though the theory is frame independent. This freedom to choose a frame can be viewed as an additional symmetry of BTGT that was not emphasized before. We then show how an [Formula: see text] permutation symmetry and a parity symmetry of frame fields natural in BTGT can be used to construct renormalizable gauge theories that introduce frame-dependent fields but remain frame independent perturbatively without any explicit reference to the usual gauge field.

1998 ◽  
Vol 13 (05) ◽  
pp. 765-778 ◽  
Author(s):  
A. S. VYTHEESWARAN

We show that the Abelian Proca model, which is gauge noninvariant with second class constraints can be converted into gauge theories with first class constraints. The method used, which we call gauge unfixing, employs a projection operator defined in the original phase space. This operator can be constructed in more than one way and so we get more than one gauge theory. Two such gauge theories are the Stückelberg theory and the theory of Maxwell field interacting with an antisymmetric tensor field. We also show that the application of the projection operator does not affect the Lorentz invariance of this model.


1988 ◽  
Vol 03 (10) ◽  
pp. 2303-2313
Author(s):  
C. ABECASIS ◽  
A. FOUSSATS ◽  
O. ZANDRON

For the Poincare group manifold we prove that there are solutions for the pseudo-connection one-forms (Yang-Mills potentials) which are not diffeomorphically equivalent to those initially proposed by Ne’eman and Regge in their gauge theory of gravity and supergravity on a (super) group manifold. This is done by imposing the factorization conditions to the geometrical formulation of supersymmetric gauge theory.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Po-Shen Hsin ◽  
Ho Tat Lam

Gauge theories in various dimensions often admit discrete theta angles, that arise from gauging a global symmetry with an additional symmetry protected topological (SPT) phase. We discuss how the global symmetry and ’t Hooft anomaly depends on the discrete theta angles by coupling the gauge theory to a topological quantum field theory (TQFT). We observe that gauging an Abelian subgroup symmetry, that participates in symmetry extension, with an additional SPT phase leads to a new theory with an emergent Abelian symmetry that also participates in a symmetry extension. The symmetry extension of the gauge theory is controlled by the discrete theta angle which comes from the SPT phase. We find that discrete theta angles can lead to two-group symmetry in 4d4d QCD with SU(N),SU(N)/\mathbb{Z}_kSU(N),SU(N)/ℤk or SO(N)SO(N) gauge groups as well as various 3d3d and 2d2d gauge theories.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Neelima Agarwal ◽  
Lorenzo Magnea ◽  
Sourav Pal ◽  
Anurag Tripathi

Abstract Correlators of Wilson-line operators in non-abelian gauge theories are known to exponentiate, and their logarithms can be organised in terms of collections of Feynman diagrams called webs. In [1] we introduced the concept of Cweb, or correlator web, which is a set of skeleton diagrams built with connected gluon correlators, and we computed the mixing matrices for all Cwebs connecting four or five Wilson lines at four loops. Here we complete the evaluation of four-loop mixing matrices, presenting the results for all Cwebs connecting two and three Wilson lines. We observe that the conjuctured column sum rule is obeyed by all the mixing matrices that appear at four-loops. We also show how low-dimensional mixing matrices can be uniquely determined from their known combinatorial properties, and provide some all-order results for selected classes of mixing matrices. Our results complete the required colour building blocks for the calculation of the soft anomalous dimension matrix at four-loop order.


Author(s):  
Kazutoshi Ohta ◽  
Norisuke Sakai

Abstract We study the moduli space volume of BPS vortices in quiver gauge theories on compact Riemann surfaces. The existence of BPS vortices imposes constraints on the quiver gauge theories. We show that the moduli space volume is given by a vev of a suitable cohomological operator (volume operator) in a supersymmetric quiver gauge theory, where BPS equations of the vortices are embedded. In the supersymmetric gauge theory, the moduli space volume is exactly evaluated as a contour integral by using the localization. Graph theory is useful to construct the supersymmetric quiver gauge theory and to derive the volume formula. The contour integral formula of the volume (generalization of the Jeffrey-Kirwan residue formula) leads to the Bradlow bounds (upper bounds on the vorticity by the area of the Riemann surface divided by the intrinsic size of the vortex). We give some examples of various quiver gauge theories and discuss properties of the moduli space volume in these theories. Our formula are applied to the volume of the vortex moduli space in the gauged non-linear sigma model with CPN target space, which is obtained by a strong coupling limit of a parent quiver gauge theory. We also discuss a non-Abelian generalization of the quiver gauge theory and “Abelianization” of the volume formula.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Hans Jockers ◽  
Peter Mayr ◽  
Urmi Ninad ◽  
Alexander Tabler

Abstract We study the algebra of Wilson line operators in three-dimensional $$ \mathcal{N} $$ N = 2 supersymmetric U(M ) gauge theories with a Higgs phase related to a complex Grassmannian Gr(M, N ), and its connection to K-theoretic Gromov-Witten invariants for Gr(M, N ). For different Chern-Simons levels, the Wilson loop algebra realizes either the quantum cohomology of Gr(M, N ), isomorphic to the Verlinde algebra for U(M ), or the quantum K-theoretic ring of Schubert structure sheaves studied by mathematicians, or closely related algebras.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Philippe Mathieu ◽  
Nicholas Teh

Abstract Recent years have seen a renewed interest in using ‘edge modes’ to extend the pre-symplectic structure of gauge theory on manifolds with boundaries. Here we further the investigation undertaken in [1] by using the formalism of homotopy pullback and Deligne- Beilinson cohomology to describe an electromagnetic (EM) duality on the boundary of M = B3 × ℝ. Upon breaking a generalized global symmetry, the duality is implemented by a BF-like topological boundary term. We then introduce Wilson line singularities on ∂M and show that these induce the existence of dual edge modes, which we identify as connections over a (−1)-gerbe. We derive the pre-symplectic structure that yields the central charge in [1] and show that the central charge is related to a non-trivial class of the (−1)-gerbe.


2009 ◽  
Vol 24 (27) ◽  
pp. 5051-5120
Author(s):  
CHANGHYUN AHN

Starting from an [Formula: see text] supersymmetric electric gauge theory with the multiple product gauge group and the bifundamentals, we apply Seiberg dual to each gauge group, obtain the [Formula: see text] supersymmetric dual magnetic gauge theories with dual matters including the gauge singlets. Then we describe the intersecting brane configurations, where there are NS-branes and D4-branes (and anti-D4-branes), of type IIA string theory corresponding to the meta-stable nonsupersymmetric vacua of this gauge theory. We also discuss the case where the orientifold 4-planes are added into the above brane configuration. Next, by adding an orientifold 6-plane, we apply to an [Formula: see text] supersymmetric electric gauge theory with the multiple product gauge group (where a single symplectic or orthogonal gauge group is present) and the bifundamentals. Finally, we describe the other cases where the orientifold 6-plane intersects with NS-brane.


2002 ◽  
Vol 17 (16) ◽  
pp. 2191-2210 ◽  
Author(s):  
C. BIZDADEA ◽  
E. M. CIOROIANU ◽  
S. O. SALIU

Consistent couplings among a set of scalar fields, two types of one-forms and a system of two-forms are investigated in the light of the Hamiltonian BRST cohomology, giving a four-dimensional nonlinear gauge theory. The emerging interactions deform the first-class constraints, the Hamiltonian gauge algebra, as well as the reducibility relations.


1989 ◽  
Vol 04 (14) ◽  
pp. 1343-1353 ◽  
Author(s):  
T.E. CLARK ◽  
C.-H. LEE ◽  
S.T. LOVE

The supersymmetric extensions of anti-symmetric tensor gauge theories and their associated tensor gauge symmetry transformations are constructed. The classical equivalence between such supersymmetric tensor gauge theories and supersymmetric non-linear sigma models is established. The global symmetry of the supersymmetric tensor gauge theory is gauged and the locally invariant action is obtained. The supercurrent on the Kähler manifold is found in terms of the supersymmetric tensor gauge field.


Sign in / Sign up

Export Citation Format

Share Document