scholarly journals Calculation of the contribution to muon g − 2 due to the effective anomalous three boson interaction and the new experimental result

Author(s):  
B. A. Arbuzov ◽  
I. V. Zaitsev

Using the approach based on Bogoliubov compensation principle is applied to the calculation of a contribution to the muon [Formula: see text]. Using the previous results on spontaneous generation of the effective anomalous three-boson interaction we calculate the contribution, which proves to agree with the well-known discrepancy. The calculated quantity contains no adjusting parameters but the experimental values for the muon and the [Formula: see text]-boson masses. The result can be considered as a confirmation of the approach.

2011 ◽  
Vol 26 (29) ◽  
pp. 4945-4958 ◽  
Author(s):  
BORIS A. ARBUZOV ◽  
IVAN V. ZAITSEV

We apply Bogoliubov compensation principle to the gauge electroweak interaction. The nontrivial solution of compensation equations for anomalous three-boson gauge invariant effective interaction uniquely defines its form-factor and parameters of the theory including value of gauge electroweak coupling [Formula: see text] in satisfactory agreement with the experimental value. A possibility of spontaneous generation of effective four-fermion interaction of heavy quarks is demonstrated. This interaction defines an equation for a scalar bound state of heavy quarks which serve as a substitute for the elementary scalar Higgs doublet. As a result we calculate the t-quark mass mt = 177 GeV in satisfactory agreement with the experimental value. The results strongly support idea of [Formula: see text] condensate as a source of the electroweak symmetry breaking. The approach predicts heavy composite Higgs scalar MH ≃ 1800 GeV .


2018 ◽  
Vol 89 (15) ◽  
pp. 3178-3188 ◽  
Author(s):  
Hua Shen ◽  
Lexi Tu ◽  
Xiaofei Yan ◽  
Sachiko Sukigara

An air layer enclosed at the interface was largely responsible for the insulation results of multilayer fabrics obtained from experiments. In this study, a three-dimensional finite element method model, in which the air layer enclosed at the interface of multilayer fabrics was ignored, was developed to calculate the fabric thermal resistance, and the result obtained from the fabric model was independent of the air. A Thermolab II Tester KES-F7 was also used to measure the thermal resistance of fabrics, and the experimental results were influenced by the air layer. By comparing the simulation and experimental result, the air layer thermal resistance was determined, and then an estimating equation, which can be used to estimate the fabric and air layer thermal resistance for multilayer fabrics, was proposed. The results suggested that the surface roughness of fabrics was strongly related to the air layer thermal resistance, with a linear relationship between them. Moreover, for multiple layers stacked by different fabrics, the air layer thermal resistance at the interface was mainly decided by the fabric with the rougher surface. An estimating equation was also developed to predict the thermal resistance of multilayer fabrics and good correlation between predicted and experimental values was observed.


2013 ◽  
Vol 28 (26) ◽  
pp. 1350127 ◽  
Author(s):  
BORIS A. ARBUZOV ◽  
IVAN V. ZAITSEV

We apply the Bogoliubov compensation principle to QCD. The nontrivial solution of compensation equations for a spontaneous generation of the anomalous three-gluon interaction leads to the determination of parameters of the theory, including behavior of the gauge coupling αs(Q2) without the Landau singularity, the gluon condensate V2 ≃0.01 GeV 4, mass of the lightest glueball MG≃1500 MeV in satisfactory agreement with the phenomenological knowledge. The results strongly support the applicability of Bogoliubov compensation approach to gauge theories of the Standard Model.


Author(s):  
Shambhoo Sharan ◽  
Prateek Khare ◽  
Ravi Shankar ◽  
Ratnesh Kumar Patel ◽  
Prasenjit Mondal

Abstract In this study, membrane less double chambered microbial fuel cell has been used for the simultaneous electricity generation and organics removal from glucose and glutamic acid (mole ratio 1:1) based synthetic solution in the presence of municipal wastewater activated sludge-based microbes using graphite as an electrode. A central composite design technique has been employed to optimize the experimental conditions using design expert software for modeling input–output model as surface function of various input parameters like initial COD, anodic pH, and run time for voltage and current density generation. The predicted model suggests that maximum voltage and current density generation of ∼14.8 mV and ∼41.11 μA/m2, respectively are obtained at COD: 1500 mg/L, pH: 7, run time: 7 days. Further, methylene blue is used as mediator for voltage and current density production at optimum condition. Experimental result depicts the substantial role of mediator concentration and showing maximum current and voltage production, approximately 10 times higher than that without meditator under similar conditions. In addition to bioenergy production, values of BOD and COD in the wastewater simulant are found to be reduced after each run which exists below the permissible limits. The developed model equations give better prediction on the voltage and current density generation which lies within the error limits of −12 to +12% and −2 to 14%, respectively to their corresponding experimental values. Overall, the process can generate simultaneously bioenergy along with wastewater treatment and the empirical model gives better prediction with experimental values.


Author(s):  
Y. Kikuchi ◽  
N. Hashikawa ◽  
F. Uesugi ◽  
E. Wakai ◽  
K. Watanabe ◽  
...  

In order to measure the concentration of arsenic atoms in nanometer regions of arsenic doped silicon, the HOLZ analysis is carried out underthe exact [011] zone axis observation. In previous papers, it is revealed that the position of two bright lines in the outer SOLZ structures on the[011] zone axis is little influenced by the crystal thickness and the background intensity caused by inelastic scattering electrons, but is sensitive to the concentration of As atoms substitutbnal for Siatomic site.As the result, it becomes possible to determine the concentration of electrically activated As atoms in silicon within an observed area by means of the simple fitting between experimental result and dynamical simulatioan. In the present work, in order to investigate the distribution of electrically activated As in silicon, the outer HOLZ analysis is applied using a nanometer sized probe of TEM equipped with a FEG.Czodiralsld-gown<100>orientated p-type Si wafers with a resistivity of 10 Ώ cm are used for the experiments.TheAs+ implantation is performed at a dose of 5.0X1015cm-2at 25keV.


2019 ◽  
Vol 3 (1) ◽  
pp. 118-126 ◽  
Author(s):  
Prihangkasa Yudhiyantoro

This paper presents the implementation fuzzy logic control on the battery charging system. To control the charging process is a complex system due to the exponential relationship between the charging voltage, charging current and the charging time. The effective of charging process controller is needed to maintain the charging process. Because if the charging process cannot under control, it can reduce the cycle life of the battery and it can damage the battery as well. In order to get charging control effectively, the Fuzzy Logic Control (FLC) for a Valve Regulated Lead-Acid Battery (VRLA) Charger is being embedded in the charging system unit. One of the advantages of using FLC beside the PID controller is the fact that, we don’t need a mathematical model and several parameters of coefficient charge and discharge to software implementation in this complex system. The research is started by the hardware development where the charging method and the combination of the battery charging system itself to prepare, then the study of the fuzzy logic controller in the relation of the charging control, and the determination of the parameter for the charging unit will be carefully investigated. Through the experimental result and from the expert knowledge, that is very helpful for tuning of the  embership function and the rule base of the fuzzy controller.


The work of multilayer glass structures for central and eccentric compression and bending are considered. The substantiation of the chosen research topic is made. The description and features of laminated glass for the structures investigated, their characteristics are presented. The analysis of the results obtained when testing for compression, compression with bending, simple bending of models of columns, beams, samples of laminated glass was made. Overview of the types and nature of destruction of the models are presented, diagrams of material operation are constructed, average values of the resistance of the cross-sections of samples are obtained, the table of destructive loads is generated. The need for development of a set of rules and guidelines for the design of glass structures, including laminated glass, for bearing elements, as well as standards for testing, rules for assessing the strength, stiffness, crack resistance and methods for determining the strength of control samples is emphasized. It is established that the strength properties of glass depend on the type of applied load and vary widely, and significantly lower than the corresponding normative values of the strength of heat-strengthened glass. The effect of the connecting polymeric material and manufacturing technology of laminated glass on the strength of the structure is also shown. The experimental values of the elastic modulus are different in different directions of the cross section and in the direction perpendicular to the glass layers are two times less than along the glass layers.


2013 ◽  
Vol 133 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Yuji Enomoto ◽  
Norihisa Iwasaki ◽  
Masashi Kitamura ◽  
Masahiro Mita ◽  
Masahiro Masuzawa

Author(s):  
A.N. Shushpanov ◽  
◽  
A.Ya. Vasin ◽  
V.M. Raykova ◽  
G.G. Gadzhiev ◽  
...  

The article considers two intermediate products of positive photoresists (1,2-naphthoquinonediazide-(2)-5-sulfonic acid of monosodium salt — Dye M and 1,2-naphthoquinonediazide-(2)-5-sulfochloride — Dye N2) from the standpoint of the tendency to explosive transformation. The experimental values of flash points determined on the OTP setup were 130 °C for Dye M and 95 °C for Dye N2. These values are close to the temperatures of the beginning of intensive exothermic decomposition (132 and 111 °C, respectively) obtained by thermogravimetric analysis. In addition, this analysis showed the presence of exothermic peaks in the studied samples both in the air and in an inert atmosphere of helium, which is a necessary condition for the manifestation of a tendency to explosive transformation. To confirm the possibility of explosive transformation, the flash points of substances were also determined by the calculation method according to the formula, which is a consequence of the problem of thermal explosion during convective heat exchange with the environment, and gave a result close to the experimental one (the values were 138 and 105 °C, respectively). For this calculation the following was used: the kinetic parameters determined by the Kissinger method, the values of the density of substances determined on an automatic pycnometer, as well as the values of the heat of explosive transformation obtained with the help of the Real computer thermodynamic program. The research results confirming the tendency of the investigated compounds to explosive transformation, as well as the critical temperatures, exceeding which is unacceptable, were transferred to the production of FGUP GNTs NIOPIK to create a safe technological process, safe storage and transportation conditions. Considering the accuracy of the measuring devices, the process temperature should not exceed 125 °C for Dye M and 90 °C for Dye N2. The conducted studies and calculations show that the computational and experimental approaches have good convergence, give values in a close temperature range, and increase the reliability of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document