Simultaneous removal of organics and bioenergy production by microbial fuel cell: modeling approach

Author(s):  
Shambhoo Sharan ◽  
Prateek Khare ◽  
Ravi Shankar ◽  
Ratnesh Kumar Patel ◽  
Prasenjit Mondal

Abstract In this study, membrane less double chambered microbial fuel cell has been used for the simultaneous electricity generation and organics removal from glucose and glutamic acid (mole ratio 1:1) based synthetic solution in the presence of municipal wastewater activated sludge-based microbes using graphite as an electrode. A central composite design technique has been employed to optimize the experimental conditions using design expert software for modeling input–output model as surface function of various input parameters like initial COD, anodic pH, and run time for voltage and current density generation. The predicted model suggests that maximum voltage and current density generation of ∼14.8 mV and ∼41.11 μA/m2, respectively are obtained at COD: 1500 mg/L, pH: 7, run time: 7 days. Further, methylene blue is used as mediator for voltage and current density production at optimum condition. Experimental result depicts the substantial role of mediator concentration and showing maximum current and voltage production, approximately 10 times higher than that without meditator under similar conditions. In addition to bioenergy production, values of BOD and COD in the wastewater simulant are found to be reduced after each run which exists below the permissible limits. The developed model equations give better prediction on the voltage and current density generation which lies within the error limits of −12 to +12% and −2 to 14%, respectively to their corresponding experimental values. Overall, the process can generate simultaneously bioenergy along with wastewater treatment and the empirical model gives better prediction with experimental values.

2019 ◽  
Vol 22 (2) ◽  
Author(s):  
Felipe Vejarano ◽  
Enrique Bravo-Montaño ◽  
Neyla Benítez-Campo ◽  
Oscar A. Loaiza ◽  
William Lizcano-Valbuena

A dual-chambered microbial fuel cell with aqueous cathode was operated with domestic wastewater to investigate the electrogenic ability of anaerobic bacteria from a municipal wastewater treatment plant. Curves of cell potential vs. current density, power density vs. current density and current at a fixed load of 100 Ω, were obtained daily to monitor the electrochemical evolution of the system as a function of substrate use in several batch cycles. A maximum power density of 1.11 µWcm-2 was obtained after 65 days of continuous operation and a coulombic efficiency of 7% and a chemical oxygen demand removal of 76% were found in the last batch cycle. Anaerobic culture of the bacteria from the anode biofilm resulted in the isolation of two Gram-positive and two Gram-negative bacteria with divergent sugar fermentation capabilities, while analysis of 16S rRNA gene fragments showed three clones from the phyla Firmicutes, δ-Proteobacteria and α-Proteobacteria. Scanning electron imaging analysis revealed an increase in cell diversity and proliferation of methanogenic archaea when changing from synthetic to real wastewater. These results reveal the influence of substrate concentration and presence of methanogenic microorganisms on the production of power in microbial fuel cells, suggesting that future developments could be a contribution for the use of this technology to decontaminate domestic wastewater in small communities.


2016 ◽  
Vol 855 ◽  
pp. 91-97
Author(s):  
Piyarut Moonsri ◽  
Wilaiporn Pongpian ◽  
Prayak Juantrong

This research studied the electricity production from organic wastes fermentation by microbial fuel cell by using a single chamber microbial fuel cell (SCMFC). Two sizes (1 L and 10 L) of simple SCMFC were fabricated by using a cylindrical plastic tank which anode compartment and cathode compartment separated by plastic plate with hole and covered with cotton fabric. The anode electrode contacted with organic matter and microorganisms where anaerobic reaction occurred to generate electron and proton. The electrons transferred through an external circuit while the protons diffused through the solution to the cathode electrode for reducing oxygen to water. From the study of the effect of different electrode types (carbon graphite rod, zinc metal, and copper metal) to the electricity generation using the SCMFC size 1 L in fermentation with synthetic sweetness solution (22%Brix) and the effective microorganism (EM) for 36 hrs, it found that the fuel cell which used copper metal as electrode produced electricity increasing over the times and has more efficient than the other electrode types. The study of electricity generation from organic waste fermentation by using the SCMFC size 10 L and using copper metal as electrode, the results showed that the fermentation of pineapple waste produced the current density, potential density, and power density higher than the fermentation of bananas and the fermentation of food garbage with EM. An optimal period of time for the production of electricity from this microbial fuel cell is the first five days of fermentation that the cells has voltage »500 mV, the current density 25.52 mA m-2, potential density 104.69 V m-2 and power density 12.59 mW m-2, and then decline over time five days (120 hrs). Moreover the bio-liquid fertilizer and the residues from the fermentation can be further used in agricultural because of the nutrient content (N, P, K), organic carbon and organic material contents available.


Author(s):  
Mustapha Abdeldjabar Charef ◽  
Hakima Kebaili ◽  
Mostefa Kameche ◽  
Christophe Innocent

A Microbial Fuel Cell (MFC) was conceived by using garden soil as a source to culture. It was then utilized as a bio-catalyst to decompose waste organic matter, reduce pollution from the soil, and produce energies. The MFC was composed of a bio-anode inoculated with a mixture of garden compost leachate and an abiotic stainless steel cathode. Besides, the bio-anode consisted of a Nafion membrane modified with carbon. The microorganisms agglomerated under polarization and formed electroactive bio-film onto bio-anode. In the preliminary test of MFC, potassium hexacyanoferrate has been utilized as catholyte, to enhance the reduction of proton and electrons resulting in a higher voltage. However, this electrolyte is toxic and oxidized rapidly, thus substituted by the hydrochloric acid. The results showed that the MFC with modified Nafion, gave relatively high current-density 379 mA/m2 in two days, whereas the conventional biofuel cell without modification attained the current-density 292 mA/m2 in four days. Nevertheless, both cells yielded almost the same current density of 20 mA/m2 during 60 days. Although it has been used for a long time, the modified Nafion has not been corroded and preserved its physicochemical properties.


REAKTOR ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 52-58
Author(s):  
Marcelinus Christwardana ◽  
Linda Aliffia Yoshi ◽  
J. Joelianingsih

This study demonstrates the feasibility of producing bioelectricity utilizing yeast microbial fuel cell (MFC) technology with sugarcane bagasse juice as a substrate. Yeast Saccharomyces cerevisiae was employed as a bio-catalyst in the production of electrical energy. Sugarcane bagasse juice can be used as a substrate in MFC yeast because of its relatively high sugar content. When yeast was used as a biocatalyst, and Yeast Extract, Peptone, D-Glucose (YPD) Medium was used as a substrate in the MFC in the acclimatization process, current density increased over time to reach 171.43 mA/m2 in closed circuit voltage (CCV), maximum power density (MPD) reached 13.38 mW/m2 after 21 days of the acclimatization process. When using sugarcane bagasse juice as a substrate, MPD reached 6.44 mW/m2 with a sugar concentration of about 5230 ppm. Whereas the sensitivity, maximum current density (Jmax), and apparent Michaelis-Menten constant (𝐾𝑚𝑎𝑝𝑝) from the Michaelis-Menten plot were 0.01474 mA/(m2.ppm), 263.76 mA/m2, and 13594 ppm, respectively. These results indicate that bioelectricity can be produced from sugarcane bagasse juice by Saccharomyces cerevisiae.Keywords: biomass valorization, biofuel cell, acclimatization, maximum power density, Michaelis-Menten constant


2019 ◽  
Vol 79 (4) ◽  
pp. 718-730 ◽  
Author(s):  
Priya Sharma ◽  
Srikanth Mutnuri

Abstract Presence of urine in municipal wastewater is a major problem faced by wastewater treatment plants. The adverse effects are noticeable as crystallization in equipment and pipelines due to high concentration of nitrogen and phosphorus. Therefore, improved technologies are required that can treat urine separately at the source of their origin and then discharge it in the main wastewater stream. In this study, the performance of the microbial fuel cell (MFC) was evaluated with mixed consortia and isolated pure cultures (Firmicutes and Proteobacter species) from biofilm for electricity generation and nutrient recovery. Microbes utilize less than 10% of total phosphorus for their growth, while 90% is recovered as struvite. The amount of struvite recovered was similar for pure and mixed culture (12 ± 5 g/L). The microbial characterization also shows that not all the biofilm-forming bacterial isolates are very much efficient in power generation and, hence, they can be further exploited to study their individual role in operating MFC. The different organic loading rates experiment shows that the performance of MFC in terms of power generation is the same for undiluted and five times diluted urine while the recovery of nutrients is better with undiluted urine, implying its direct use of urine in operating fuel cell.


Author(s):  
Minh Hang Do ◽  
Huu Hao Ngo ◽  
Wenshan Guo ◽  
Soon Woong Chang ◽  
Dinh Duc Nguyen ◽  
...  

2014 ◽  
Vol 26 (6) ◽  
pp. 1767-1770
Author(s):  
Shaohua Chen ◽  
Xuelan Xia ◽  
Jianping Cheng ◽  
Jiaquan Wang

2016 ◽  
Vol 2 (2) ◽  
pp. 274-281 ◽  
Author(s):  
Zheng Ge ◽  
Zhen He

A modularized microbial fuel cell system can effectively treat primary effluent and use the produced energy to offset part of its energy consumption.


Sign in / Sign up

Export Citation Format

Share Document