DERIVING THE FOUR-STRING AND OPEN-CLOSED STRING INTERACTIONS FROM GEOMETRIC STRING FIELD THEORY

1990 ◽  
Vol 05 (04) ◽  
pp. 659-724 ◽  
Author(s):  
MICHIO KAKU

One of the baffling questions concerning the covariant open string field theory is why there are two distinct BRST theories and why the four-string interaction appears in one version but not the other. We solve this mystery by showing that both theories are gauge-fixed versions of a higher gauge theory, called the geometric string field theory, with a new field, a string vierbein [Formula: see text], which allows us to gauge the string length and σ-parametrization. By fixing the gauge, we can derive the “endpoint gauge” (the covariantized light cone gauge), the “midpoint gauge” of Witten, or the “interpolating gauge” with arbitrary string lengths. We show explicitly that the four-string interaction is a gauge artifact of the geometric theory (the counterpart of the four-fermion instantaneous Coulomb term of QED). By choosing the interpolating gauge, we produce a new class of four-string interactions which smoothly interpolate between the endpoint gauge and the midpoint gauge (where it vanishes). Similarly, we can extract the closed string as a bound state of the open string, which appears in the endpoint gauge but vanishes in the midpoint gauge. Thus, the four-string and open-closed string interactions do not have to be added to the action as long as the string vierbein is included.

2008 ◽  
Vol 56 (4-5) ◽  
pp. 343-351 ◽  
Author(s):  
M. Baumgartl ◽  
I. Sachs

2002 ◽  
Vol 536 (1-2) ◽  
pp. 129-137 ◽  
Author(s):  
Mohsen Alishahiha ◽  
Mohammad R. Garousi

2004 ◽  
Vol 19 (11) ◽  
pp. 841-853 ◽  
Author(s):  
ASHOKE SEN

Recent investigations involving the decay of unstable D-branes in string theory suggest that the tree level open string theory which describes the dynamics of the D-brane already knows about the closed string states produced in the decay of the brane. We propose a specific conjecture involving quantum open string field theory to explain this classical result, and show that the recent results in two-dimensional string theory are in exact accordance with this conjecture.


2003 ◽  
Vol 2003 (07) ◽  
pp. 059-059 ◽  
Author(s):  
Ian Ellwood ◽  
Jessie Shelton ◽  
Washington Taylor

2018 ◽  
Vol 168 ◽  
pp. 07004 ◽  
Author(s):  
Taejin Lee

We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the Polyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field theory. It implies that the well known Kawai-Lewellen-Tye (KLT) relations of the first quantized string theory may be promoted to the second quantized closed string theory. We explicitly calculate the scattering amplitudes of three gravitons by using the closed string field theory in the proper-time gauge.


2001 ◽  
Vol 16 (04) ◽  
pp. 557-607 ◽  
Author(s):  
HIROYUKI FUJI ◽  
YUTAKA MATSUO

We discuss some basic properties of the open string on the symmetric product which is supposed to describe the open string field theory in discrete light-cone quantization (DLCQ). We first derive the consistent twisted boundary conditions for Annulus/Möbius/Klein Bottle diagrams and give the explicit form of the corresponding amplitude. They have the interpretation as the long open (or closed) string amplitude but the world sheet topology viewed from the short string and from the long string is in general different. Boundary (cross-cap) states of the short string are classified into three categories, the boundary (cross-cap) states of the long string and the "joint" state which connects two strings. The partition function has the typical structure of the string field theory in DLCQ. Tadpole condition is also analyzed and gives a reasonable gauge group SO(213).


2003 ◽  
Vol 2003 (08) ◽  
pp. 020-020 ◽  
Author(s):  
Tomohiko Takahashi ◽  
Syoji Zeze

Sign in / Sign up

Export Citation Format

Share Document