EFFECTIVE ACTIONS FOR GAUGE THEORIES WITH CHERN-SIMONS TERMS-I

1990 ◽  
Vol 05 (07) ◽  
pp. 1267-1284 ◽  
Author(s):  
B.A. BAMBAH ◽  
C. MUKKU

The effective Lagrangian for a three-dimensional gauge theory with a Chern-Simons term is evaluated up to one-loop effects. It is shown to be completely finite. It also does not exhibit any imaginary part. The calculation is carried out in a background field analogue of the Feynman gauge and gauge invariance is maintained throughout the calculation. In the appendix, an argument is presented as to why this Feynman gauge may be a “good” gauge for our results to be applied to high temperature QCD and in particular to the quark-gluon plasma.

1992 ◽  
Vol 70 (5) ◽  
pp. 301-304 ◽  
Author(s):  
D. G. C. McKeon

We investigate a three-dimensional gauge theory modeled on Chern–Simons theory. The Lagrangian is most compactly written in terms of a two-index tensor that can be decomposed into fields with spins zero, one, and two. These all mix under the gauge transformation. The background-field method of quantization is used in conjunction with operator regularization to compute the real part of the two-point function for the scalar field.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Hans Jockers ◽  
Peter Mayr ◽  
Urmi Ninad ◽  
Alexander Tabler

Abstract We study the algebra of Wilson line operators in three-dimensional $$ \mathcal{N} $$ N = 2 supersymmetric U(M ) gauge theories with a Higgs phase related to a complex Grassmannian Gr(M, N ), and its connection to K-theoretic Gromov-Witten invariants for Gr(M, N ). For different Chern-Simons levels, the Wilson loop algebra realizes either the quantum cohomology of Gr(M, N ), isomorphic to the Verlinde algebra for U(M ), or the quantum K-theoretic ring of Schubert structure sheaves studied by mathematicians, or closely related algebras.


1991 ◽  
Vol 06 (39) ◽  
pp. 3591-3600 ◽  
Author(s):  
HIROSI OOGURI ◽  
NAOKI SASAKURA

It is shown that, in the three-dimensional lattice gravity defined by Ponzano and Regge, the space of physical states is isomorphic to the space of gauge-invariant functions on the moduli space of flat SU(2) connections over a two-dimensional surface, which gives physical states in the ISO(3) Chern–Simons gauge theory. To prove this, we employ the q-analogue of this model defined by Turaev and Viro as a regularization to sum over states. A recent work by Turaev suggests that the q-analogue model itself may be related to an Euclidean gravity with a cosmological constant proportional to 1/k2, where q=e2πi/(k+2).


2019 ◽  
Vol 34 (23) ◽  
pp. 1930011 ◽  
Author(s):  
Cyril Closset ◽  
Heeyeon Kim

We give a pedagogical introduction to the study of supersymmetric partition functions of 3D [Formula: see text] supersymmetric Chern–Simons-matter theories (with an [Formula: see text]-symmetry) on half-BPS closed three-manifolds — including [Formula: see text], [Formula: see text], and any Seifert three-manifold. Three-dimensional gauge theories can flow to nontrivial fixed points in the infrared. In the presence of 3D [Formula: see text] supersymmetry, many exact results are known about the strongly-coupled infrared, due in good part to powerful localization techniques. We review some of these techniques and emphasize some more recent developments, which provide a simple and comprehensive formalism for the exact computation of half-BPS observables on closed three-manifolds (partition functions and correlation functions of line operators). Along the way, we also review simple examples of 3D infrared dualities. The computation of supersymmetric partition functions provides exceedingly precise tests of these dualities.


1993 ◽  
Vol 08 (08) ◽  
pp. 749-755 ◽  
Author(s):  
S.B. KHADKIKAR ◽  
J.C. PARIKH ◽  
P.C. VINODKUMAR

A relativistic harmonic confinement model for quarks and a similar current confinement model for gluons have been used to obtain an equation of state for quark-gluon plasma. Such models may be deduced from QCD under certain approximations, by considering small quantum fluctuations about a background field. At high temperatures a T7 dependence of pressure and energy density is obtained with relativistic harmonic mode of confinement.


1996 ◽  
Vol 11 (15) ◽  
pp. 2643-2660 ◽  
Author(s):  
R.E. GAMBOA SARAVÍ ◽  
G.L. ROSSINI ◽  
F.A. SCHAPOSNIK

We study parity violation in (2+1)-dimensional gauge theories coupled to massive fermions. Using the ζ function regularization approach we evaluate the ground state fermion current in an arbitrary gauge field background, showing that it gets two different contributions which violate parity invariance and induce a Chern–Simons term in the gauge field effective action. One is related to the well-known classical parity breaking produced by a fermion mass term in three dimensions; the other, already present for massless fermions, is related to peculiarities of gauge-invariant regularization in odd-dimensional spaces.


1997 ◽  
Vol 12 (08) ◽  
pp. 1431-1464 ◽  
Author(s):  
Agustin Nieto

Recent developments of perturbation theory at finite temperature based on effective field theory methods are reviewed. These methods allow the contributions from the different scales to be separated and the perturbative series to be reorganized. The construction of the effective field theory is shown in detail for ϕ4 theory and QCD. It is applied to the evaluation of the free energy of QCD at order g5 and the calculation of the g6 term is outlined. Implications for the application of perturbative QCD to the quark–gluon plasma are also discussed.


1990 ◽  
Vol 05 (05) ◽  
pp. 959-988 ◽  
Author(s):  
MICHIEL BOS ◽  
V.P. NAIR

Three-dimensional Chern-Simons gauge theories are quantized in a functional coherent state formalism. The connection with two-dimensional conformal field theory is found to emerge naturally. The normalized wave functionals are identified as generating functionals for the chiral blocks of two-dimensional current algebra.


Sign in / Sign up

Export Citation Format

Share Document