MASS AND ENERGY-MOMENTUM TENSOR OF QUANTUM STRINGS IN GRAVITATIONAL SHOCK-WAVES

1992 ◽  
Vol 07 (13) ◽  
pp. 3043-3064 ◽  
Author(s):  
H. J. DE VEGA ◽  
N. SANCHEZ

We investigate at the quantum level the nonlinear transformation relating the string operators (zero modes and oscillators) and Fock space states before and after the collision with gravitational shock waves. This throws light on the rôle of the space–time geometry in this problem. We do all the treatment for a general shock wave space–time of any localized source. We compute the exact expectation values of the total number (N) and mass ( M 2) operators and show that they are finite, which generalize our previous results in the Aichelburg–Sexl geometry. We study the energy-momentum tensor of the string and compute the exact expectation values of all its components. We analyze vacuum polarization and quadratic fluctuations. All these physical magnitudes are finite. We express all of them in terms of exact integral representations in which the role of the real pole singularities characteristic of the tree level string spectrum (real mass resonances) are clearly exhibited. The presence of such poles is not at all related to the structure of the space–time geometry (which may or may not be singular).

2003 ◽  
Vol 18 (26) ◽  
pp. 4797-4809 ◽  
Author(s):  
NORMA G. SANCHEZ

Key issues and essential features of classical and quantum strings in gravitational plane waves, shock waves and space–time singularities are synthetically understood. This includes the string mass and mode number excitations, energy–momentum tensor, scattering amplitudes, vacuum polarization and wave-string polarization effect. The role of the real pole singularities characteristic of the tree level string spectrum (real mass resonances) and that of the space–time singularities is clearly exhibited. This throws light on the issue of singularities in string theory which can be thus classified and fully physically characterized in two different sets: strong singularities (poles of order ≥ 2, and black holes) where the string motion is collective and nonoscillating in time, outgoing states and scattering sector do not appear, the string does not cross the singularities; and weak singularities (poles of order < 2, (Dirac δ belongs to this class) and conic/orbifold singularities) where the whole string motion is oscillatory in time, outgoing and scattering states exist, and the string crosses the singularities. Common features of strings in singular wave backgrounds and in inflationary backgrounds are explicitly exhibited. The string dynamics and the scattering/excitation through the singularities (whatever their kind: strong or weak) is fully physically consistent and meaningful.


2018 ◽  
Vol 96 (10) ◽  
pp. 1074-1084
Author(s):  
Bijan Saha

Within the scope of Bianchi type-IX cosmological model we have studied the role of spinor field in the evolution of the Universe. It is found that unlike the diagonal Bianchi models in this case the components of energy–momentum tensor of spinor field along the principal axis are not the same (i.e., [Formula: see text]), even in the absence of spinor field nonlinearity. The presence of nontrivial non-diagonal components of energy–momentum tensor of the spinor field imposes severe restrictions both on geometry of space–time and on the spinor field itself. As a result the space–time turns out to be either locally rotationally symmetric or isotropic. In this paper we considered the Bianchi type-IX space–time both for a trivial b, that corresponds to standard Bianchi type-IX and the one with a non-trivial b. It was found that a positive self-coupling constant λ1 gives rise to an oscillatory mode of expansion, while a trivial λ1 leads to rapid expansion at the early stage of evolution.


2001 ◽  
Vol 16 (24) ◽  
pp. 1565-1571 ◽  
Author(s):  
V. B. BEZERRA ◽  
R. M. TEIXEIRA FILHO ◽  
G. GREBOT ◽  
M. E. X. GUIMARÃES

We study the vacuum polarization effect in the space–time generated by a magnetic flux cosmic string in the framework of a scalar–tensor theory of gravity. The vacuum expectation values of the energy–momentum tensor of a conformally coupled scalar field are calculated and the dilaton's contribution to the vacuum polarization effect is shown.


2011 ◽  
Vol 20 (02) ◽  
pp. 161-168 ◽  
Author(s):  
MOHAMMAD R. SETARE ◽  
M. DEHGHANI

We investigate the energy–momentum tensor for a massless conformally coupled scalar field in the region between two curved surfaces in k = -1 static Robertson–Walker space–time. We assume that the scalar field satisfies the Robin boundary condition on the surfaces. Robertson–Walker space–time space is conformally related to Rindler space; as a result we can obtain vacuum expectation values of the energy–momentum tensor for a conformally invariant field in Robertson–Walker space–time space from the corresponding Rindler counterpart by the conformal transformation.


1992 ◽  
Vol 07 (04) ◽  
pp. 345-356 ◽  
Author(s):  
RON COHEN

Bosonic representations of N=2 superconformal algebra are studied. We show that the free energy momentum tensor decomposes into an orthogonal sum of the interacting bosonic model (IBM) and a coset-like tensors. We define the notion of flags of models and show that the central charge does not decrease along the flags. We examine the conditions for an arbitrary un-oriented graph to form an IBM. We discuss several properties of the chiral algebra of these models and examine the role of the continuous parameters by studying an example. Finally we discuss the relations between these models and the N=2 superconformal coset models.


Author(s):  
Deep Bhattacharjee

Chronology unprotected mechanisms are considered with a very low gravitational polarization to make the wormhole traversal with positive energy density everywhere. No need of exotic matter has been considered with the assumption of the Einstein-Dirac-Maxwell Fields, encountering above the non-zero stress-energy-momentum tensor through spacelike hypersurfaces by a hyperbolic coordinate shift.


2002 ◽  
Vol 17 (29) ◽  
pp. 1923-1936 ◽  
Author(s):  
OLIVERA MIŠKOVIĆ ◽  
BRANISLAV SAZDOVIĆ

Starting from the known representation of the Kac–Moody algebra in terms of the coordinates and momenta, we extend it to the representation of the super Kac–Moody and super Virasoro algebras. Then we use general canonical method to construct an action invariant under local gauge symmetries, where components of the super energy–momentum tensor L± and G± play the role of the diffeomorphisms and supersymmetry generators respectively. We obtain covariant extension of WZNW theory with respect to local supersymmetry as well as explicit expressions for gauge transformations.


2020 ◽  
Vol 13 (13) ◽  
pp. 1-4
Author(s):  
S.K. Sharma ◽  
P.R. Dhungel ◽  
U. Khanal

As a continuation of solving the equations governing the perturbation of the Friedmann-Lemaitre-Robertson- Walker (FLRW) space-time in Newman-Penrose formalism, the behaviour of the massive Klein-Gordon (KG) field coupled to the FLRW has been investigated. The Equation of Motion has been written and solved separately for radial and temporal parts. The former solution has come to be in terms of the Gegenbauer polynomials and spherical harmonics and the latter being in the WKB approximation. The particle current, energy momentum tensor and potential have also been obtained.


Sign in / Sign up

Export Citation Format

Share Document