scholarly journals ADELIC HARMONIC OSCILLATOR

1995 ◽  
Vol 10 (16) ◽  
pp. 2349-2365 ◽  
Author(s):  
BRANKO DRAGOVICH

Using the Weyl quantization we formulate one-dimensional adelic quantum mechanics, which unifies and treats ordinary and p-adic quantum mechanics on an equal footing. As an illustration the corresponding harmonic oscillator is considered. It is a simple, exact and instructive adelic model. Eigenstates are Schwartz-Bruhat functions. The Mellin transform of the simplest vacuum state leads to the well-known functional relation for the Riemann zeta function. Some expectation values are calculated. The existence of adelic matter at very high energies is suggested.

1997 ◽  
Vol 254 (1) ◽  
pp. 25-40 ◽  
Author(s):  
R.K. Bhaduri ◽  
Avinash Khare ◽  
S.M. Reimann ◽  
E.L. Tomusiak

1996 ◽  
Vol 11 (19) ◽  
pp. 1563-1567 ◽  
Author(s):  
BORIS F. SAMSONOV

The supersymmetric quantum mechanical model based on higher-derivative supercharge operators possessing unbroken supersymmetry and discrete energies below the vacuum state energy is described. As an example harmonic oscillator potential is considered.


2018 ◽  
Vol 33 (26) ◽  
pp. 1850150 ◽  
Author(s):  
Won Sang Chung ◽  
Hassan Hassanabadi

Based on the one-dimensional quantum mechanics on (anti)-de Sitter background [W. S. Chung and H. Hassanabadi, Mod. Phys. Lett. A 32, 26 (2107)], we discuss the Ramsauer–Townsend effect. We also formulate the WKB method for the quantum mechanics on (anti)-de Sitter background to discuss the energy level of the quantum harmonic oscillator and quantum bouncer.


2019 ◽  
Vol 34 (04) ◽  
pp. 1950028
Author(s):  
R. D. Mota ◽  
D. Ojeda-Guillén ◽  
M. Salazar-Ramírez ◽  
V. D. Granados

By modifying and generalizing known supersymmetric models, we are able to find four different sets of one-dimensional Hamiltonians for the inverted harmonic oscillator. The first set of Hamiltonians is derived by extending the supersymmetric quantum mechanics with reflections to non-Hermitian supercharges. The second set is obtained by generalizing the supersymmetric quantum mechanics valid for non-Hermitian supercharges with the Dunkl derivative instead of [Formula: see text]. Also, by changing the derivative [Formula: see text] by the Dunkl derivative in the creation and annihilation-type operators of the standard inverted harmonic oscillator [Formula: see text], we generate the third set of Hamiltonians. The fourth set of Hamiltonians emerges by allowing a parameter of the supersymmetric two-body Calogero-type model to take imaginary values. The eigensolutions of definite parity for each set of Hamiltonians are given.


2008 ◽  
Vol 05 (01) ◽  
pp. 17-32
Author(s):  
CARLOS CASTRO PERELMAN

The Riemann's hypothesis (RH) states that the nontrivial zeros of the Riemann zeta-function are of the form sn = 1/2 + iλn. By constructing a continuous family of scaling-like operators involving the Gauss–Jacobi theta series and by invoking a novel [Formula: see text]-invariant Quantum Mechanics, involving a judicious charge conjugation [Formula: see text] and time reversal [Formula: see text] operation, we show why the Riemann Hypothesis is true. An infinite family of theta series and their Mellin transform leads to the same conclusions.


2019 ◽  
Vol 34 (24) ◽  
pp. 1950190
Author(s):  
Won Sang Chung ◽  
Hassan Hassanabadi

In this paper, we consider the quantum mechanics with Dunkl derivative. We use the Dunkl derivative to obtain the coordinate representation of the momentum operator and Hamiltonian. We introduce the scalar product to find that the momentum is Hermitian under this inner product. We study the one-dimensional box problem (the spin-less particle with mass m confined to the one-dimensional infinite wall). Finally, we discuss the harmonic oscillator problem.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 44
Author(s):  
Kaushik Y. Bhagat ◽  
Baibhab Bose ◽  
Sayantan Choudhury ◽  
Satyaki Chowdhury ◽  
Rathindra N. Das ◽  
...  

The concept of the out-of-time-ordered correlation (OTOC) function is treated as a very strong theoretical probe of quantum randomness, using which one can study both chaotic and non-chaotic phenomena in the context of quantum statistical mechanics. In this paper, we define a general class of OTOC, which can perfectly capture quantum randomness phenomena in a better way. Further, we demonstrate an equivalent formalism of computation using a general time-independent Hamiltonian having well-defined eigenstate representation for integrable Supersymmetric quantum systems. We found that one needs to consider two new correlators apart from the usual one to have a complete quantum description. To visualize the impact of the given formalism, we consider the two well-known models, viz. Harmonic Oscillator and one-dimensional potential well within the framework of Supersymmetry. For the Harmonic Oscillator case, we obtain similar periodic time dependence but dissimilar parameter dependences compared to the results obtained from both micro-canonical and canonical ensembles in quantum mechanics without Supersymmetry. On the other hand, for the One-Dimensional Potential Well problem, we found significantly different time scales and the other parameter dependence compared to the results obtained from non-Supersymmetric quantum mechanics. Finally, to establish the consistency of the prescribed formalism in the classical limit, we demonstrate the phase space averaged version of the classical version of OTOCs from a model-independent Hamiltonian, along with the previously mentioned well-cited models.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2014
Author(s):  
André LeClair

In previous work, it was shown that if certain series based on sums over primes of non-principal Dirichlet characters have a conjectured random walk behavior, then the Euler product formula for its L-function is valid to the right of the critical line ℜ(s)>12, and the Riemann hypothesis for this class of L-functions follows. Building on this work, here we propose how to extend this line of reasoning to the Riemann zeta function and other principal Dirichlet L-functions. We apply these results to the study of the argument of the zeta function. In another application, we define and study a one-point correlation function of the Riemann zeros, which leads to the construction of a probabilistic model for them. Based on these results we describe a new algorithm for computing very high Riemann zeros, and we calculate the googol-th zero, namely 10100-th zero to over 100 digits, far beyond what is currently known. Of course, use is made of the symmetry of the zeta function about the critical line.


Author(s):  
Goran S. Djordjević ◽  
Branko Dragovich ◽  
Ljubiša Nešić

Feynman's path integral in adelic quantum mechanics is considered. The propagator [Formula: see text] for one-dimensional adelic systems with quadratic Lagrangians is analytically evaluated. Obtained exact general formula has the form which is invariant under interchange of the number fields ℝ and ℚp.


2017 ◽  
Vol 32 (26) ◽  
pp. 1750138 ◽  
Author(s):  
Won Sang Chung ◽  
Hassan Hassanabadi

In this paper, the quantum mechanics on the (anti) de Sitter background is investigated. the extended uncertainty principle and the deformed calculus are discussed for the quantum mechanics on the (anti)-de Sitter background. As examples one-dimensional box problem and one-dimensional harmonic oscillator problem are discussed.


Sign in / Sign up

Export Citation Format

Share Document