Effects of Pre-Damage on HCF Behaviors of Ti-6Al-4V Alloy

2003 ◽  
Vol 17 (08n09) ◽  
pp. 1994-2000
Author(s):  
Taewon Park ◽  
Shankar Mall ◽  
Thedore Nicholas

The effects of pre-damage on the fatigue strength of Ti-6Al-4V were investigated by applying the low cycle fatigue(LCF) as a pre-damage prior to high cycle fatigue(HCF) test. The fatigue strengths were obtained by means of step-loading method. The pre-damage condition was decided as 900MPa, 0.5R, 50,000 cycles through LCF test, and was introduced before step-loading test. The fatigue strength of Ti-6Al-4V alloy derived from step-loading test without pre-damage was about 639MPa. The introduction of pre-damage deteriorates the fatigue strength about 6%. Progressive change in elongation with increasing cycles was observed. The strain accumulated by pre-damage varies the displacement in the next loading step, but afterward this doesn't change the displacement any more. The strain formed by pre-damage is thought to result in earlier failure and lower fatigue strength.

Author(s):  
M.-H. Shen ◽  
Sajedur R. Akanda

An energy-based framework is developed to determine the fatigue strength parameters of the Basquin equation and the fatigue ductility parameters of the Manson–Coffin equation to predict high cycle fatigue (HCF) and low cycle fatigue (LCF) life of a steam turbine rotor base and weld materials. The proposed framework is based on assessing the complete energy necessary to cause fatigue failure of a material. This energy is considered as a fundamental material property and is known as the fatigue toughness. From the fatigue toughness and the experimentally determined fatigue lives at two different stress amplitudes, the cyclic parameters of the Ramberg–Osgood constitutive equation that describes the hysteresis stress–strain loop of a cycle are determined. Next, the coefficients and the exponents of the Basquin and the Manson–Coffin equations are computed from the fatigue toughness and the cyclic parameters of a material. The predicted fatigue life obtained from the present energy-based framework is found to be in a good agreement with the experimental data.


2004 ◽  
Vol 449-452 ◽  
pp. 1265-1268
Author(s):  
Toshikazu Akahori ◽  
Mitsuo Niinomi ◽  
Hisao Fukui ◽  
Akihiro Suzuki

Microstructures of Ti-29Nb-13Ta-4.6Zr (TNTZ) aged at temperatures between 573 and 723 K after solution treatment at 1063 K have super fine omega phase, or􀀂 both super fine alpha and omega phases, respectively in beta phase with an average grain diameter of 20 µm. Plain fatigue strength of TNTZ aged after solution treatment is much greater than that of as-solutionized TNTZ in both low cycle fatigue and high cycle fatigue life regions. This is due to the improvement of the balance of strength and ductility by the precipitation of alpha phase. Fretting fatigue strength of TNTZ conducted with various heat treatments decreases dramatically as compared with their plain fatigue strength in both low cycle fatigue and high cycle fatigue life regions. In this case, the decreasing ratio of fretting fatigue life increases with increasing the small crack propagation area where both the tangential force and frictional force at the contact plane of pad exist. In fretting fatigue in air, the ratio of fretting damage (Pf/Ff), where Pf and Ff stand for plain fatigue limit and fretting fatigue limit, respectively, increases with increasing elastic modulus. In fretting fatigue in Ringer’s solution, the passive film on specimen surface is broken by fretting action in TNTZ, which have excellent corrosion resistance, and, as a result, corrosion pits that lead to decreasing fretting fatigue strength especially in high cycle fatigue life region, are formed on its surface.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7480
Author(s):  
Shatumbu Thomas Alweendo ◽  
Motoaki Morita ◽  
Kayo Hasegawa ◽  
Shinichi Motoda

Since hot-dip galvanizing causes a heat effect on cold-worked steel substrate and produces a coating layer comprised of distinct phases with varying mechanical properties, the fatigue mechanism of hot-dip galvanized steel is very complex and hard to clarify. In this study, AISI 1020 steel that has been normalized to minimize susceptibility to the heat effect was used to clarify the effect of the galvanizing layer on the tensile and fatigue properties. The galvanizing layer causes a reduction in the yield point, tensile strength, and fatigue strength. The reduction in the fatigue strength was more significant in the high cycle fatigue at R = 0.5 and 0.01 and in the low cycle fatigue at R = 0.5. The galvanizing layer seems to have very little effect on the fatigue strength at R = −1.0 in the low and high cycle fatigue. Since the fatigue strengths at R = 0.01 and −1.0 in the low cycle fatigue were strongly related to the tensile strength of the substrate, the cracking of galvanized steel was different than that of non-galvanized steel. The fatigue strength of galvanized steel at R = 0.5 dropped remarkably in the low cycle fatigue in comparison to the non-galvanized steel, and many cracks clearly occurred in the galvanizing layer. The galvanizing layer reduced the fatigue strength only under tension–tension loading. We believe that the findings in this study will be useful in the fatigue design of hot-dip galvanized steel.


Author(s):  
D. Fuchs ◽  
S. Schurer ◽  
T. Tobie ◽  
K. Stahl

AbstractDemands on modern gearboxes are constantly increasing, for example to comply with lightweight design goals or new CO2 thresholds. Normally, to increase performance requires making gearboxes and powertrains more robust. However, this increases the weight of a standard gearbox. The two trends therefore seem contradictory. To satisfy both of these goals, gears in gearboxes can be shot-peened to introduce high compressive residual stresses and improve their bending fatigue strength. To determine a gear’s tooth root bending fatigue strength, experiments are conducted up to a defined number of load cycles in the high cycle fatigue range. However, investigations of shot-peened gears have revealed tooth root fracture damage initiated at non-metallic inclusions in and above the very high cycle fatigue range. This means that a further reduction in bending load carrying capacity has to be expected at higher load cycles, something which is not covered under current standard testing conditions. The question is whether there is a significant decrease in the bending load carrying capacity and, also, if pulsating tests conducted at higher load cycles—or even tests on the FZG back-to-back test rig—are necessary to determine a proper endurance fatigue limit for shot-peened gears. This paper examines these questions.


Author(s):  
Takamoto Itoh ◽  
Masao Sakane ◽  
Takahiro Morishita ◽  
Hiroshi Nakamura ◽  
Masahiro Takanashi

This paper studies multiaxial low cycle fatigue crack mode and failure life of Ti-6Al-4V. Stress controlled fatigue tests were carried out using a hollow cylinder specimen under multiaxial loadings of ?=0, 0.4, 0.5 and 1 of which stress ratio R=0 at room temperature. ? is a principal stress ratio and is defined as ?=sigmaII/sigmaI, where sigmaI and sigmaII are principal stresses of which absolute values take the largest and middle ones, respectively. Here, the test at ?=0 is a uniaxial loading test and that at ?=1 an equi-biaxial loading test. A testing machine employed is a newly developed multiaxial fatigue testing machine which can apply push-pull and reversed torsion loadings with inner pressure onto the hollow cylinder specimen. Based on the obtained results, this study discusses evaluation of the biaxial low cycle fatigue life and crack mode. Failure life is reduced with increasing ? induced by cyclic ratcheting. The crack mode is affected by the surface condition of cut-machining and the failure life depends on the crack mode in the multiaxial loading largely.


Sign in / Sign up

Export Citation Format

Share Document