MODIFIED COMFORTABLE DRIVING MODEL FOR CONGESTED TRAFFIC FLOW

2004 ◽  
Vol 18 (14) ◽  
pp. 1991-2001 ◽  
Author(s):  
RUI JIANG ◽  
QING-SONG WU

In this paper, the concepts of "jammed status" and "jam headway" [X. B. Li, R. Jiang and Q. S. Wu, Phys. Rev.E68, 016117 (2003)] are introduced into the Modified Comfortable Driving (MCD) model [R. Jiang and Q. S. Wu, J. Phys.A36, 381 (2003)] to simulate the congested traffic flow including synchronized flow and wide moving jams. Using computer simulation, the fundamental diagram, the space–time plots, the time series of the density in the jams, the 1-min average data in the flow-density plane, the traffic patterns induced by red light are investigated. It is shown that the new model can describe both the synchronized flow and the sparse wide jams quite well.

Author(s):  
Meng Xu ◽  
Ziyou Gao

This paper aims to discuss unstable traffic flow and to identify if chaotic phenomena exist in a traffic flow dynamic system. Two discrete dynamic models are proposed, which are derived from the flow-density-speed fundamental diagram and Del Castillo and Benitez’s exponential curve model and maximum sensitivity curve model. Both the models have two parameters, which are the ratio of free flow and spacing average speed and the ratio of the absolute value of kinematic wave speed at jam density and free flow speed. Chaos is found in the two models when the two values increase separately. The Liapunov exponents were used to examine the characters of the chaotic behavior in the two models. These results are illustrated by numerical examples.


2018 ◽  
Vol 32 (29) ◽  
pp. 1850325 ◽  
Author(s):  
Tao Wang ◽  
Jing Zhang ◽  
Shubin Li ◽  
Haoming Du ◽  
Ge Gao

This paper investigates the features of congested traffic flow near the combination of off-ramp and on-ramp. Firstly, the stochastic off-ramp and on-ramp are designed. Then, a two-lane lattice hydrodynamic traffic flow model coupled with a combination bottleneck is proposed to reproduce the empirical phenomena. In the simulation, the asymmetric-lane change rules were adopted, and many congested traffic flow patterns were observed near the combination bottlenecks, such as homogeneous synchronized traffic (HST), moving localized cluster (MLC), triggered stop-and-go traffic (TSG), oscillating congested traffic (OCT), pinned localized cluster (PLC), and homogeneous congested traffic (HCT). The obtained simulation results suggest that the proposed model is good and can produce the observed congestion spatiotemporal traffic patterns well.


Author(s):  
Afzal Ahmed ◽  
Satish V. Ukkusuri ◽  
Shahrukh Raza Mirza ◽  
Ausaja Hassan

Traffic streams in many developing countries consist of various modes of transport, with high heterogeneity in driver behavior. Modeling these types of traffic streams, in which traffic rules (speed limit, lane discipline, etc.) are not strictly followed, is a complex task. A review of the existing literature shows that there is a lack of traffic flow models that model the behavior of heterogeneous and undisciplined traffic streams. Like other undisciplined traffic streams, there are no speed limits (hence no speed enforcement) on most of the roads in Karachi, Pakistan. Lane discipline is also not observed by drivers, which results in a varying number of traffic lanes on a road. Therefore, most of the existing traffic flow models/simulation packages developed for disciplined traffic streams cannot appropriately model traffic streams without lane discipline. This research proposes a width-based cell transmission model (WCTM) by developing a fundamental flow-density diagram whose parameters are a function of the road width. Extensive field data have been collected from a selected arterial in Karachi for development of the fundamental traffic flow diagram. The values of the computed parameters are significantly different than the values reported in the literature. The piecewise-linear flow-density relation is developed by optimally estimating the breakpoints. Results show that the quadrilateral and pentagonal-shaped fundamental diagrams fit better with the collected data in comparison with the triangular-shaped fundamental diagram. The proposed WCTM is applied to selected segments of an arterial and results show that the WCTM was able to accurately model different traffic conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-17
Author(s):  
Nan Zhang ◽  
Xiaoguang Yang ◽  
Wangjing Ma

The wide scattering nature of the fundamental diagram (FD) with observed flow-density data may be associated with the dynamical traffic flow process, especially on signalized intersection. To describe the uncertainty of FD, in this work we established stochastic fundamental diagram (SFD) which is defined by the distributions of shockwave speed. Our approach is based on a two-level stochastic process of the traffic flow system in terms of the dynamics of traffic density and state mode associated with signal phases which is named switching linear dynamical systems (SLDS). Then, variational Bayesian learning method is adopted to compute the distributions of SFD parameter to approximate the experimental distributions of shockwave calculated by the observed flow-density data. Given traffic flow data from the NGSIM program, the verification result demonstrated that the SFD can be more helpful to capture the main features of the observed widely scattering of the flow-density data compared with FD. With the shockwave speed sampled from the SFD, the SLDS could describe the dynamic characteristics of traffic flow and be applied to the maximum likelihood estimation of traffic density or flow rate. Because it is simple and automatically calculated, the SFD provides an alternative description for fundamental diagram and its uncertainty in the traffic flow.


Author(s):  
Christopher Cummings ◽  
Hani Mahmassani

Urban air mobility (UAM) is an emerging mode that promises to provide relief to congested urban streets. UAM relies on airspace, however, which is an exhaustible resource considering minimum aircraft separation requirements. In light of these requirements and UAM vehicle attributes, a simulation is developed to explore UAM traffic flows and congestion development. A decentralized conflict resolution scheme is employed in the form of a non-linear program (NLP) to offer improved flexibility in detours relative to past aircraft simulations. An expansion of Edie’s definitions of density and flow rate are used in conjunction with average speed to explore the relationships between traffic flow characteristics. The results find that UAM traffic flows emulate those of other modes, by following the familiar traffic patterns of build-up and breakdown captured in the macroscopic fundamental diagram. These findings also suggest the presence of a capacity of airspace that should be carefully managed by operators to achieve optimal system performance. The relationships established in this study highlight issues that UAM operators and aviation planners may face and could be used to improve the vehicle traffic modeling of other UAM models.


2021 ◽  
Vol 13 (20) ◽  
pp. 11227
Author(s):  
Piyapong Suwanno ◽  
Rattanaporn Kasemsri ◽  
Kaifeng Duan ◽  
Atsushi Fukuda

Bangkok, Thailand is prone to flooding after heavy rain. Many road sections become impassable, causing severe traffic congestion and greatly impacting activities. Optimal vehicle management requires the knowledge of flooding impact on road traffic conditions in specific areas. A method is proposed to quantify urban flood situations by expressing traffic conditions in specific ranges using the concept of macroscopic fundamental diagram (MFD). MFD-based judgement allows for a road manager to understand the current traffic situation and take appropriate traffic control measures. MFD analysis identified traffic flow–density and density–velocity relationships by using the shape of the estimated MFD travel time-series plots. Then, results were applied to develop a traffic model with vehicle-flow parameters as a measuring method for road-network performance. The developed model improved road-network traffic-flow performance under different flood conditions. A method is also presented for traffic management evaluation on the assumption that flooding occurs.


Sign in / Sign up

Export Citation Format

Share Document