EVALUATION OF CREEP-FATIGUE LIFE BY FRACTION OF CAVITY AREA

2006 ◽  
Vol 20 (25n27) ◽  
pp. 4237-4242
Author(s):  
BUMJOON KIM ◽  
BYEONGSOO LIM

The components of power plant such as main steam pipe and gas turbines are operated under static and cyclic load conditions. As the period of static load increases, the service life of these components decreases. Generally, the increase of cyclic load results in fatigue damage and the increase of static load period results in the metallurgical degradation by the effect of creep. Under the creep-fatigue interaction, cavities cause rapid degradation of material and decreases the creep-fatigue life of high temperature components. In this paper, creep-fatigue tests were performed to investigate the relationship between the cavity and creep-fatigue life under various tensile hold times. Test materials were HAZ and base metal of P122 (12 Cr -2 W ) alloy weldment. The effect of hold times on the cavity damage was examined and the fraction of cavity area was analyzed. From the linear relationship of Fca (fraction of cavity area) and experimental life, a new parameter for life evaluation, Fca, was introduced and the creep-fatigue life was predicted by Fca. Good agreement was found between experimental and predicted life. Under the same hold time condition, the Fca of HAZ was greater than that of base metal while the creep-fatigue life of HAZ was shorter than that of base metal.

2005 ◽  
Vol 297-300 ◽  
pp. 415-420 ◽  
Author(s):  
Byeong Soo Lim ◽  
Bum Joon Kim ◽  
Sung Jin Song ◽  
Young H. Kim

The application of nondestructive evaluation to creep-fatigue damage was examined in this paper. Generally, as the hold time of static load increases, the degradation of material becomes more rapid and the creep-fatigue life decreases. Therefore, in the evaluation of creep-fatigue strength and life of high-pressure vessel such as main steam pipe at high temperature is very important in power plants. In this study, the creep-fatigue behavior of P92 steel was evaluated nondestructively by the backscattered ultrasound using the creep-fatigue specimens. The results obtained by Rayleigh surface wave of backscattered ultrasound were compared and analyzed with the experimental parameters. Also, the relation between the SDA (slope of degraded area) and creep-fatigue life was examined. From the result of nondestructive test, we suggest that SDA would be used as the new parameter for the evaluation of creep-fatigue damage. As the degradation increased, the SDA decreased and also the creep-fatigue life decreased.


Author(s):  
Takashi Ogata

High-temperature components in thermal power plants are subjected to creep-fatigue loading where creep cavities initiate and grow on grain boundaries. Development of life assessment methods of high-temperature components in gas turbine for maintenance and operating cost reduction is strongly demanded by Japanese utilities. Especially, first row blades are subjected to complicated thermomechanical-fatigue (TMF) loading during start, steady state, stop cycles. Therefore it is important to clarify the TMF life property of blade materials to develop a life assessment procedure. In this study, tension-torsion biaxial TMF tests have been performed between 450°C and 870°C on a Ni-base directional solidified superalloy. Strain ratio ϕ was defined as shear strain range, Δγ, to normal strain range, Δε, and ϕ varied from 0 to infinity. The “Blade wave form,” which simulated temperature and strain condition of the blade surface, was employed. The biaxial TMF tests were also carried out on coated specimens with CoCrAlY. Fatigue life under the biaxial TMF loading showed strain ratio dependency giving shorter life with increasing ϕ. Considering biaxial stress effect on the failure life, an equivalent shear strain range was derived based on the Γ-plane theory, and the biaxial TMF life was well correlated with the equivalent shear strain range. The biaxial TMF life was reduced by introducing strain hold duration at the maximum temperature. The maximum stress increased by introducing the hold time due to increasing mean stress level in the Blade wave form. It was concluded that creep damage gradually accumulated during cycles resulting in reduction in the TMF life. The nonlinear creep-fatigue damage accumulation model was applied to predict failure life of the hold time tests. As a result, the failure lives were predicted within a factor of 1.5 on the observed life. It was found that the fatigue life of CoCrAlY coated material reduced 1∕2 to 1∕3 from that of the substrate. From observation of the longitudinal section of the coated specimens, many cracks started from the coating surface and penetrated into the substrate. It was concluded that the CoCrAlY coating reduced the biaxial TMF life due to acceleration of crack initiation period in the substrate.


Author(s):  
Shengde Zhang ◽  
Yukio Takahashi

This paper presents creep and creep-fatigue deformations and lives of both Ni-based alloys, Alloy 740H and Alloy 617. Creep tests were performed using solid bar specimens at 650°C-800°C, and effect of cyclic loading on creep deformation and rupture was discussed. Strain controlled creep-fatigue tests were also performed under triangular and trapezoidal waveforms at 700°C. Alloy 740H showed stronger creep-fatigue resistance compared to Alloy 617. Creep-fatigue lives in trapezoidal waveform were smaller than those in the pure fatigue test and the creep-fatigue lives decreased as the hold time increased. Applicability of four representative creep-fatigue life prediction methods was discussed.


2006 ◽  
Vol 321-323 ◽  
pp. 476-479
Author(s):  
Bum Joon Kim ◽  
Byeong Soo Lim ◽  
Sung Jin Song ◽  
Young H. Kim

This work investigates the relationship between the creep-fatigue life and ultrasonic test of creep-fatigue damage. Under the creep-fatigue interaction, the main cause of life reduction is the initiation and growth of microvoid with increasing hold time. The number/size of microvoid/cavity, the fraction of cavity area varied with the hold time. Therefore, the life evaluation using the microvoid with the variation of hold time is very informative for safety of components in power plants. In this study, using the heat resisting alloy, P122 steel for USC (ultra super critical) power plant, the creep-fatigue tests with various hold times and their ultrasonic inspection were carried out for the purpose of evaluation for creep-fatigue life. The results obtained by Rayleigh surface wave of backscattered ultrasound were compared and analyzed with the experimental parameters. The good agreement between the experimental life and the predicted life was obtained.


2006 ◽  
Vol 110 ◽  
pp. 105-110
Author(s):  
Bum Joon Kim ◽  
Byeong Soo Lim ◽  
Sung Jin Song

Generally, as the hold time of static load increases, the degradation of material becomes more rapid and the creep-fatigue life decreases. Under the creep-fatigue interaction, the cause of life decrease was mainly the initiation and growth of microvoid with increasing hold time. In this study, using the newly developed alloy of P92, the artificial creep-fatigue degradation tests and its ultrasonic inspection were carried out to evaluate creep-fatigue life. From the relations between the creep-fatigue life and the nondestructive degradation assessment by backscattered ultrasound inspection, the new nondestructive life evaluation parameter, SDA (Slope of Decaying Amplitude) was proposed. Also, to verify the nondestructive life evaluation ability, the life evaluation results by SDA were compared with those of the destructive life evaluation obtained through the fraction of cavity area. From the test result of backscattering Rayleigh surface wave, the linear relationship between SDA and experimental life could be obtained. The good agreement between the experimental life and the predicted life by SDA was also obtained. Finally, it can be stated that the new life evaluation/degradation parameter, SDA (Slope of Decaying Amplitude) could be utilized for the evaluation of the material degradation under creep-fatigue interaction.


2013 ◽  
Vol 470 ◽  
pp. 581-584 ◽  
Author(s):  
Hong Xu ◽  
Wei Wei Zhang ◽  
Karl Maile

The fatigue tests with 16 hours hold time have been conducted for two rotor steels, 1CrMoV and 2CrMoNiVW at 550°C to investigate their creep-fatigue interaction behaviors, as well as those without hold time for contrast. And two life prediction methods are used to correlate the present creep-fatigue life data. It is shown that a significant reduction in fatigue life is observed with hold time in tension, and it is also observed that 1CrMoV steel exhibits a higher creep-fatigue life than 2CrMoNiVW when strain hold time is 16 hours, and 2CrMoNiVW seems to be more sensitive to hold time influence. In addition, both methods could give satisfactory creep-fatigue life predictions, but with their own limitations.


Author(s):  
Keiji Kubushiro ◽  
Hiroki Yoshizawa ◽  
Takuya Itou ◽  
Hirokatsu Nakagawa

Creep-fatigue properties of candidate materials of 700°C-USC boiler are investigated. The candidate materials are Alloy 230, Alloy 263, Alloy 617 and HR6W. Creep-fatigue tests were conducted at 700°C and the effect of both strain range and hold time were studied. Experimental results showed that at 1.0% strain range, cycles to failure with 60 min strain holding is about 10% of that without strain holding, but at 0.7% strain range, cycles to failure with 60 min strain holding decreases down to about 1% of without strain holding. It appears that cycles to failure is decreased by increasing strain holding time at all tested strain ranges, and the effect of holding time is emphasized at small strain range. These phenomena depend on the kind of alloys.


Author(s):  
J. K. Wright ◽  
L. J. Carroll ◽  
T.-L. Sham ◽  
N. J. Lybeck ◽  
R. N. Wright

Alloy 617 is the leading candidate material for an intermediate heat exchanger for the very high temperature reactor (VHTR). As part of evaluating the behavior of this material in the expected service conditions, creep–fatigue testing was performed. The cycles to failure decreased compared to fatigue values when a hold time was added at peak tensile strain. At 850°C, increasing the tensile hold duration continued to degrade the creep–fatigue resistance, at least to the investigated strain–controlled hold time of up to 60 minutes at the 0.3% strain range and 240 minutes at the 1.0% strain range. At 950°C, the creep–fatigue cycles to failure are not further reduced with increasing hold duration, indicating saturation occurs at relatively short hold times. The creep and fatigue damage fractions have been calculated and plotted on a creep–fatigue interaction D–diagram. Test data from creep–fatigue tests at 800 and 1000°C on an additional heat of Alloy 617 are also plotted on the D–diagram.


2007 ◽  
Vol 353-358 ◽  
pp. 190-194
Author(s):  
Nian Jin Chen ◽  
Zeng Liang Gao ◽  
Wei Zhang ◽  
Yue Bao Le

The law of low-cycle fatigue with hold time at elevated temperature is investigated in this paper. A new life prediction model for the situation of fatigue and creep interaction is developed, based on the damage due to fatigue and creep. In order to verify the prediction model, strain-controlled low-cycle fatigue tests at temperature 693K, 823K and 873K and fatigue tests with various hold time at temperature 823K and 873K for 316L austenitic stainless steel were carried out. Good agreement is found between the predictions and experimental results.


Sign in / Sign up

Export Citation Format

Share Document