CONDENSATE FRACTION IN THE DYNAMIC STRUCTURE FUNCTION OF BOSE FLUIDS

2007 ◽  
Vol 21 (13n14) ◽  
pp. 2169-2180
Author(s):  
M. SAARELA ◽  
F. MAZZANTI ◽  
V. APAJA

We present results on the behavior of the dynamic structure function in the short wave length limit using the equation of motion method. The one-body continuity equation defines the self-energy, which becomes a functional of the fluctuating two-body correlation function. We evaluate the self-energy in this limit and show that sum rules up to the second moment, which requires the self-energy in the short wave length limit and zero frequency to be proportional to the kinetic energy per particle, are exactly satisfied. We compare our results with the impulse approximation and calculate the condensate fraction. An analytic expression for the momentum distribution is also derived.

2008 ◽  
Vol 22 (25n26) ◽  
pp. 4327-4337
Author(s):  
M. SAARELA ◽  
F. MAZZANTI ◽  
V. APAJA

We present results on the behavior of the dynamic structure function in the short wave length limit using the equation of motion method. Within this framework we study the linear response of a quantum system to an infinitesimal external perturbation by direct minimization of the action integral. As a result we get a set of coupled continuity equations which define the self-energy. We evaluate the self-energy and the dynamic structure function in the short wavelength limit and show that sum rules up to the third moment are fulfilled. This implies, for instance, that the self-energy at short wavelengths and zero frequency is proportional to the kinetic energy per particle. An essential feature in this derivation is that the short range behavior of the two-particle distribution and the long wavelength phonon induced scattering are exactly satisfied. We calculate the condensate fraction and show that our results agree very well with the Monte Carlo simulations.


The purpose of this paper is to discuss the absorption of light by non-metallic solids, and in particular the mechanism by which the energy of the light absorbed is converted into heat. If one considers from the theoretical point of view the absorption spectrum of an insulation crystal, one finds that it consists of a series of sharp lines leading up to a series limit, to the short wave-length side of which true continuous absorption sets in (Peierls 1932; Mott 1938). In practice the lattice vibrations will broaden the lines to a greater of less extent. When a quantum of radiation is absorbed in the region of true continuous absorption, a free electron in the conduction band and a "positive hole" are formed with enough energy to move away from one another and to take part in a photocurrent within the crystal. When, however, a quantum is absorbed in one of the absorption lines , the positive hole and electron formed do not have enough energy to separate, but move in one another's field in a quantized state. An electron in a crystal moving in the field of a positive hole has been termed by Frenkel (1936) an "exciton".


Our knowledge concerning the state of the atmosphere lying above about 80 km. in height has been derived from experiments on radio wave reflexion as well as from studies of terrestrial magnetism and of the aurora. The information derived from radio experiments is, fortunately, in the nature of a supplement to, rather than a duplicate of, information derivable in other ways. As one of the best examples in this connexion may be mentioned the question of electrical conductivity. Here the magnetic studies of Schuster and Chapman yield an estimate of the total conductivity for currents travelling horizontally, whereas the radio measurements give the state of ionization at different levels from which the specific conductivity at those levels may be estimated. One of the most striking things about the ionosphere is the marked solar control. Speaking generally it may be said that the ionization increases and decreases as the sun rises and sets. Again, speaking generally, we may say that the main part of the ionization is caused by solar-violet light. The rays from the sun meet the outer layers of the atmosphere first and the short wave-length radiation is absorbed there, causing ionization. It thus comes about that the study of the ionosphere becomes the study of an interesting part of the sun's spectrum which cannot be detected at ground level. It also becomes the study of certain atomic processes such as photo-ionization, recombination of ions and attachment of electrons to neutral molecules such as cannot be investigated at very low pressure in the laboratory, because of the influence of the walls of the vessel confining the gas.


2007 ◽  
Vol 4 (3) ◽  
pp. 387-392
Author(s):  
Baghdad Science Journal

The paper include studies the effect of solvent of dye doped in polymeric laser sample which manufactured in primo press way, which is used as an active (R6G) tunable dye lasers. The remarks show that, when the viscosity of the solvent (from Pure Water to Ethanol), for the same concentration and thickness of the performance polymeric sample is increased, the absorption spectrum is shifts towards the long wave length (red shift), & towards short wave length (blue shift) for fluorescence spectrum, also increased the quantum fluorescence yield. The best result we obtained for the quantum fluorescence yield is (0.882) with thickness (0.25mm) in Ethanol solvent in concentration (2*10-3mole/liter), while when we used the Pure Water as a solvent, we found that the best quantum fluorescence yield is (0.72) at the same thickness & concentration of the sample.


2017 ◽  
Vol 59 (8-9) ◽  
pp. 763-771 ◽  
Author(s):  
G. M. Bubnov ◽  
Yu. N. Artemenko ◽  
V. F. Vdovin ◽  
D. B. Danilevsky ◽  
I. I. Zinchenko ◽  
...  

1963 ◽  
Vol 18 (7) ◽  
pp. 557-562 ◽  
Author(s):  
Rainer Bergfeld

Morphogenesis and differentiation of fern gametophytes (Dryopteris filix-mas) are strongly controlled by light. “Normal” morphogenesis, i. e. formation of two- or three dimensional prothallia, can occur only under short wave length visible light (= blue light). In darkness and under long wave length visible light (= red light) the gametophytes will grow as filaments. The blue light dependent photoreactive system which controls morphogenesis seems to be located in the outer layers of the cytoplasm. The control of morphogenesis is causally connected with the increase of protein synthesis under the influence of blue light.In the present paper the influence of red and blue light on shape and volume of the nucleus in the fully grown basal cell of the young gametophyte of Dryopteris filix-mas has been investigated. In blue light the nuclei are more or less spherical, in red and in darkness they are spindle shaped. If the light quality is changed the shape of the nuclei is only slightly influenced; the nuclear volume, however, is drastically changed: increase of volume in the blue, decrease of nuclear volume in red and darkness. These reversible changes of nuclear volume under the influence of light, which are apparently correlated with changing rates of protein synthesis, are an impressive example for the control of nuclear properties by an external factor via the cytoplasm.


2004 ◽  
Vol 19 (25) ◽  
pp. 4231-4249 ◽  
Author(s):  
A. A. BICHL ◽  
M. ERTL ◽  
A. GERHOLD ◽  
J. M. GRIMSTRUP ◽  
L. POPP ◽  
...  

The quantization of the noncommutative [Formula: see text], U(1) super-Yang–Mills action is performed in the superfield formalism. We calculate the one-loop corrections to the self-energy of the vector superfield. Although the power-counting theorem predicts quadratic ultraviolet and infrared divergences, there are actually only logarithmic UV and IR divergences, which is a crucial feature of noncommutative supersymmetric field theories.


1960 ◽  
Vol 6 (1) ◽  
pp. 31-34
Author(s):  
Shoichi Ishikawa ◽  
Jiro Shimizu

1960 ◽  
Vol 10 ◽  
pp. 706-708 ◽  
Author(s):  
Herbert Friedman

The X-ray spectrum of a quiet Sun can be approximated by a 500,000° K Planckian distribution. In the absence of coronal excitation, as evidenced by the intensity of the Fe xiv green line, the X-ray spectrum has a short wave-length limit near 20 A. Coronal activity is accompanied by weak emissions down to wave-lengths as short as 6 A, which appear to be associated with coronal hot spots at temperatures of 2 x 106° K or higher.


Sign in / Sign up

Export Citation Format

Share Document