THE ANALYSIS OF EXERGY EFFICIENCY IN THE LOW TEMPERATURE HEAT EXCHANGER

2007 ◽  
Vol 21 (18n19) ◽  
pp. 3497-3499 ◽  
Author(s):  
LAN PENG ◽  
YOU-RONG LI ◽  
SHUANG-YING WU ◽  
BO LAN

Based on the analyzing of the thermodynamic performance of the heat transfer process in the low temperature heat exchangers, the exergy efficiency of the heat transfer process is defined and a general expression for the exergy efficiency is derived, which can be used to discuss the effect of heat transfer units number and heat capacity ratio of fluids on the exergy efficiency of the low temperature heat exchanger. The variation of the exergy efficiency for several kinds of flow patterns in the low heat exchangers is compared and the calculating method of the optimal values of heat capacity ratio for the maximum exergy efficiency is given.

2007 ◽  
Vol 21 (18n19) ◽  
pp. 3503-3505 ◽  
Author(s):  
S. Y. WU ◽  
X. F. YUAN ◽  
Y. R. Li ◽  
L. PENG

By analyzing exergy transfer process of the low temperature heat exchangers operating below the surrounding temperature, the concept of exergy transfer coefficient is put forward and the expressions which involving relevant variables for the exergy transfer coefficient, the heat transfer units number and the ratio of cold to hot fluids heat capacity rate, etc. are derived. Taking the parallel flow, counter flow and cross flow low temperature heat exchangers as examples, the numerical results of exergy transfer coefficient are given and the comparison of exergy transfer coefficient with heat transfer coefficient is analyzed.


Author(s):  
Shuang-Ying Wu ◽  
Xiao-Feng Yuan ◽  
You-Rong Li ◽  
Wen-Zhi Cui ◽  
Liao Quan

In this paper, the concept of exergy transfer effectiveness is put forward firstly and the expressions involving relevant variables for the exergy transfer effectiveness, the heat transfer units number and the ratio of cold and hot fluids heat capacity rate have been derived for the high and low temperature heat exchangers. Taking the parallel flow, counter flow and cross flow heat exchangers as examples, the numerical results of exergy transfer effectiveness are given and the comparison of exergy transfer effectiveness with heat transfer effectiveness is analyzed.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1853 ◽  
Author(s):  
Pavel Neuberger ◽  
Radomír Adamovský

The efficiency of a heat pump energy system is significantly influenced by its low-temperature heat source. This paper presents the results of operational monitoring, analysis and comparison of heat transfer fluid temperatures, outputs and extracted energies at the most widely used low temperature heat sources within 218 days of a heating period. The monitoring involved horizontal ground heat exchangers (HGHEs) of linear and Slinky type, vertical ground heat exchangers (VGHEs) with single and double U-tube exchanger as well as the ambient air. The results of the verification indicated that it was not possible to specify clearly the most advantageous low-temperature heat source that meets the requirements of the efficiency of the heat pump operation. The highest average heat transfer fluid temperatures were achieved at linear HGHE (8.13 ± 4.50 °C) and double U-tube VGHE (8.13 ± 3.12 °C). The highest average specific heat output 59.97 ± 41.80 W/m2 and specific energy extracted from the ground mass 2723.40 ± 1785.58 kJ/m2·day were recorded at single U-tube VGHE. The lowest thermal resistance value of 0.07 K·m2/W, specifying the efficiency of the heat transfer process between the ground mass and the heat transfer fluid, was monitored at linear HGHE. The use of ambient air as a low-temperature heat pump source was considered to be the least advantageous in terms of its temperature parameters.


2015 ◽  
Vol 55 (4) ◽  
pp. 267 ◽  
Author(s):  
Jan Skočilas ◽  
Ievgen Palaziuk

<p>This paper deals with a computational fluid dynamics (CFD) simulation of the heat transfer process during turbulent hot water flow between two chevron plates in a plate heat exchanger. A three-dimensional model with the simplified geometry of two cross-corrugated channels provided by chevron plates, taking into account the inlet and outlet ports, has been designed for the numerical study. The numerical model was based on the shear-stress transport (SST) <em>k-!</em> model. The basic characteristics of the heat exchanger, as values of heat transfer coefficient and pressure drop, have been investigated. A comparative analysis of analytical calculation results, based on experimental data obtained from literature, and of the results obtained by numerical simulation, has been carried out. The coefficients and the exponents in the design equations for the considered plates have been arranged by using simulation results. The influence on the main flow parameters of the corrugation inclination angle relative to the flow direction has been taken into account. An analysis of the temperature distribution across the plates has been carried out, and it has shown the presence of zones with higher heat losses and low fluid flow intensity.</p>


Author(s):  
Q. Y. Chen ◽  
M. Zeng ◽  
D. H. Zhang ◽  
Q. W. Wang

In the present paper, the compact ceramic high temperature heat exchangers with parallel offset strip fins and inclined strip fins (inclined angle β = 0∼70°) are investigated with CFD method. The numerical simulations are carried out for high temperature (1500°C), without and with radiation heat transfer, and the periodic boundary is used in transverse direction. The fluid of high temperature side is the standard flue gas. The material of heat exchanger is SiC. NuS-G.R(with surface and gaseous radiation heat transfer) is averagely higher than NuNo.R (without radiation heat transfer) by 7% and fS-G.R is averagely higher than fNo.R by 5%. NuS-G.R(with surface and gaseous radiation heat transfer) is averagely higher than NuS.R (with only surface radiation heat transfer) by 0.8% and fS-G.R is averagely higher than fS.R by 3%. The thermal properties have significantly influence on the heat transfer and pressure drop characteristics, respectively. The heat transfer performance of the ceramic heat exchanger with inclined fins (β = 30°) is the best.


Author(s):  
K. O. Goncharuk ◽  
D. S. Kornilova ◽  
D. S. Yakovlev ◽  
N. N. Prokhorenko

Standard equipment is a considerable part of modern equipment of chemical plants. In particular, standard heat exchangers are widespread. Possible deviations in the operation of heat exchangers at plants from the preset parameters of their operation can lead to deterioration of the operation of the whole technological system. For this reason an attempt is made in the article to suggest a hypothesis explaining what can lead to disfunction in the operation of heat exchangers. The authors use a method of calculating technological reliability to study the operability of a vertical shell-and-tube heat exchanger. First, the size of the heat transfer surface of the vertical heat exchanger is calculated for specific conditions of work, and a standard device is chosen. Then a method of calculating the technological reliability of the calculated and standard heat exchangers is applied. An operating problem is solved on the assumption that external impacts on the heat transfer process are not fixed, but varied and are within their acceptable intervals. After comparing the probability of the workability of the calculated heat exchanger and of the chosen standard apparatus, a conclusion is made about the expediency of using the standard heat exchanger.


Sign in / Sign up

Export Citation Format

Share Document