scholarly journals CFD SIMULATION OF THE HEAT TRANSFER PROCESS IN A CHEVRON PLATE HEAT EXCHANGER USING THE SST TURBULENCE MODEL

2015 ◽  
Vol 55 (4) ◽  
pp. 267 ◽  
Author(s):  
Jan Skočilas ◽  
Ievgen Palaziuk

<p>This paper deals with a computational fluid dynamics (CFD) simulation of the heat transfer process during turbulent hot water flow between two chevron plates in a plate heat exchanger. A three-dimensional model with the simplified geometry of two cross-corrugated channels provided by chevron plates, taking into account the inlet and outlet ports, has been designed for the numerical study. The numerical model was based on the shear-stress transport (SST) <em>k-!</em> model. The basic characteristics of the heat exchanger, as values of heat transfer coefficient and pressure drop, have been investigated. A comparative analysis of analytical calculation results, based on experimental data obtained from literature, and of the results obtained by numerical simulation, has been carried out. The coefficients and the exponents in the design equations for the considered plates have been arranged by using simulation results. The influence on the main flow parameters of the corrugation inclination angle relative to the flow direction has been taken into account. An analysis of the temperature distribution across the plates has been carried out, and it has shown the presence of zones with higher heat losses and low fluid flow intensity.</p>


2012 ◽  
Vol 26 (3) ◽  
pp. 476-479
Author(s):  
H. Dardour ◽  
S. Mazouz ◽  
P. Cézac ◽  
J.-M. Renaume ◽  
A. Bellagi


2016 ◽  
Vol 78 (8-4) ◽  
Author(s):  
Chin Yung Shin ◽  
Normah Mohd-Ghazali

In this research, the trapezoidal shaped chevron plate heat exchanger (PHE) is simulated using computational fluid dynamics (CFD) software to determine its heat transfer capacity and friction factor. The PHE is modelled with chevron angles from 30° to 60°, and also the performances are compared with the plain PHE. The validation is done by comparing simulation result with published references using 30° trapezoidal chevron PHE. The Nusselt number and friction factor obtained from simulation model is plotted against different chevron angles. The Nusselt number and friction factor is also compared with available references, which some of the references used sinusoidal chevron PHE. The general pattern of Nusselt number and friction factor with increasing chevron angle agrees with the references. The heat transfer capacity found in current study is higher than the references used, and at the same time, the friction factor also increased. Besides this, it is also found that the counter flow configuration has better heat transfer capacity performance than the parallel flow configuration.



Author(s):  
Sangho Sohn ◽  
Jeong-Heon Shin ◽  
Jungchul Kim ◽  
Seok Ho Yoon ◽  
Kong Hoon Lee


2014 ◽  
Vol 18 (4) ◽  
pp. 1355-1360 ◽  
Author(s):  
Rajavel Rangasamy

An experimental and numerical study of heat transfer and flow characteristics of spiral plate heat exchanger was carried out. The effects of geometrical aspects of the spiral plate heat exchanger and fluid properties on the heat transfer characteristics were also studied. Three spiral plate heat exchangers with different plate spacing (4mm, 5mm and 6 mm) were designed, fabricated and tested. Physical models have been experimented for different process fluids and flow conditions. Water is taken as test fluid. The effect of mass flow rate and Reynolds number on heat transfer coefficient has been studied. Correlation has been developed to predict Nusselt numbers. Numerical models have been simulated using CFD software package FLUENT 6.3.26. The numerical Nusselt number have been calculated and compared with that of experimental Nusselt number.







2017 ◽  
Vol 19 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Paulina Pianko-Oprych ◽  
Zdzisław Jaworski

Abstract The paper presents a Computational Fluid Dynamics (CFD) numerical study for a new design of a plate heat exchanger with two different flow patterns. The impact of geometric characteristics of the two studied geometries of exchanger plates on the intensification process of heat transfer was considered. The velocity, temperature and pressure distributions along the heat exchanger were examined. The CFD results were validated against experimental data and a good agreement was achieved. The results revealed that geometrical arrangement of the plates strongly influence the fluid flow. An increase in the Reynolds number led to lowering the friction factor value and increasing the pressure drop. The configuration II of the plate heat exchanger resulted in lower outlet hot fluid temperature in comparison with the configuration I, which means improvement of heat transfer.



2008 ◽  
Vol 12 (3) ◽  
pp. 85-90 ◽  
Author(s):  
Rangasamy Rajavel ◽  
Kaliannagounder Saravanan

In this paper, the heat transfer coefficients in a spiral plate heat exchanger are investigated. The test section consists of a plate of width 0.3150 m, thickness 0.001 m and mean hydraulic diameter of 0.01 m. The mass flow rate of hot water (hot fluid) is varying from 0.5 to 0.8 kg/s and the mass flow rate of cold water (cold fluid) varies from 0.4 to 0.7 kg/s. Experiments have been conducted by varying the mass flow rate, temperature, and pressure of cold fluid, keeping the mass flow rate of hot fluid constant. The effects of relevant parameters on spiral plate heat exchanger are investigated. The data obtained from the experimental study are compared with the theoretical data. Besides, a new correlation for the Nusselt number which can be used for practical applications is proposed.



2009 ◽  
Vol 4 (1) ◽  
Author(s):  
K.Dheena Thayalan ◽  
Ponnusamy Kalaichelvi

The plate heat exchanger exhibits excellent heat transfer characteristic, which allows a very compact design with ease of maintenance and modification of heat transfer area by adding (or) removing plates. Constructional parameters such as flow path, trough angle and corrugation can affect the performance of plate heat exchangers by altering effectiveness (?) and number of transfer unit (NTU). Especially plate heat exchangers play a vital role in petroleum industries for wide range of temperature application. Hence, it was proposed to choose kerosene as cold fluid and hot water as hot fluid in this present investigation. A vertical type of plate heat exchanger, in which flow pattern is maintained as co-current, has been used to conduct the experimental runs. The numbers of plates in the plate heat exchanger used in the present study are 10. The number of flow channels (space maintained between two consecutive channels) allocated for both fluids are 9. Experimental runs have been conducted for different combinations of hot fluid flow rates and cold fluid flow rates for single phase flow, in which hot water is considered as hot streams and kerosene as cold fluid. The thermal performance of plate heat exchanger has been analyzed based on calculated parameters using experimental data set. A similar corrugated plate heat exchanger model having the same dimensions as that of the experimental one was developed with aid of CFD tool. The model was simulated at different operating conditions and compared with experimental results. The simulated results are in good agreement with experimental data. The percentage deviation between experimental results and simulation results for over all heat transfer coefficient is less than ±6%.



Sign in / Sign up

Export Citation Format

Share Document