VIBRATIONAL EXCITATIONS IN GRADED ELASTIC CHAINS

2007 ◽  
Vol 21 (23n24) ◽  
pp. 4184-4189
Author(s):  
J. J. XIAO ◽  
K. YAKUBO ◽  
K. W. YU

We study vibrational excitations in linearly graded materials and/or systems. Graded systems demonstrate a unique spectrum and mode profiles, resulting in a new type of localization-delocalization transition. The nature of gradients can confine certain vibrational excitations, and redistribute them spatially. These features are contrasted to the two extreme cases of inhomogeneous system, i.e., periodically modulated system and randomly disordered system, We show in detail vibrational normal modes sustained by one dimensional graded force constant and graded mass networks, in particular, a unusual kind of modes called gradons. We propose an approach to study vibrational modes in a grades elastic system with the help of a series of homogeneous systems. Using this approach, we elaborate the features of the elastic gradons and the phonon-gradon transition.

Author(s):  
Oussama Boutahir ◽  
Souhail Lakhlifi ◽  
Sidi Abdelmajid Ait Abdelkader ◽  
Mourad Boutahir ◽  
Abdelhai Rahmani ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 609
Author(s):  
Tadeusz Chyży ◽  
Monika Mackiewicz

The conception of special finite elements called multi-area elements for the analysis of structures with different stiffness areas has been presented in the paper. A new type of finite element has been determined in order to perform analyses and calculations of heterogeneous, multi-coherent, and layered structures using fewer finite elements and it provides proper accuracy of the results. The main advantage of the presented special multi-area elements is the possibility that areas of the structure with different stiffness and geometrical parameters can be described by single element integrated in subdivisions (sub-areas). The formulation of such elements has been presented with the example of one-dimensional elements. The main idea of developed elements is the assumption that the deformation field inside the element is dependent on its geometry and stiffness distribution. The deformation field can be changed and adjusted during the calculation process that is why such elements can be treated as self-adaptive. The application of the self-adaptation method on strain field should simplify the analysis of complex non-linear problems and increase their accuracy. In order to confirm the correctness of the established assumptions, comparative analyses have been carried out and potential areas of application have been indicated.


2003 ◽  
Vol 70 (3) ◽  
pp. 359-363 ◽  
Author(s):  
S. Mukherjee ◽  
Glaucio H. Paulino

Paulino and Jin [Paulino, G. H., and Jin, Z.-H., 2001, “Correspondence Principle in Viscoelastic Functionally Graded Materials,” ASME J. Appl. Mech., 68, pp. 129–132], have recently shown that the viscoelastic correspondence principle remains valid for a linearly isotropic viscoelastic functionally graded material with separable relaxation (or creep) functions in space and time. This paper revisits this issue by addressing some subtle points regarding this result and examines the reasons behind the success or failure of the correspondence principle for viscoelastic functionally graded materials. For the inseparable class of nonhomogeneous materials, the correspondence principle fails because of an inconsistency between the replacements of the moduli and of their derivatives. A simple but informative one-dimensional example, involving an exponentially graded material, is used to further clarify these reasons.


2021 ◽  
Vol 5 (1) ◽  
pp. 147-161
Author(s):  
Soh Edwin Mukiawa ◽  

In the present work, we study the effect of time varying delay damping on the stability of a one-dimensional porous-viscoelastic system. We also illustrate our findings with some examples. The present work improve and generalize existing results in the literature.


2021 ◽  
Vol 63 (7) ◽  
pp. 975
Author(s):  
А.П. Клинов ◽  
М.А. Мазо ◽  
В.В. Смирнов

The thermal conductivity of a one-dimensional chain of rotators with a double-barrier interaction potential of nearest neighbors has been studied numerically. We show that the height of the "internal" barrier, which separates topologically nonequivalent degenerate states, significantly affects the temperature dependence of the heat conductivity of the system. The small height of this barrier leads to the dominant contribution of the non-linear normal modes at low temperatures. In such a case the coefficient of thermal conductivity turns out to be the risen function of the temperature. The growth of the coefficient is limited by local fluctuations corresponding to jumps over the barriers. At higher values of the internal barrier height, dependence of the heat conductivity on temperature is similar to that of classical rotators.


Sign in / Sign up

Export Citation Format

Share Document