scholarly journals EXACT GROUND STATES OF CORRELATED ELECTRONS ON PENTAGON CHAINS

2013 ◽  
Vol 27 (14) ◽  
pp. 1330009 ◽  
Author(s):  
ZSOLT GULÁCSI

We construct a class of exact ground states for correlated electrons on pentagon chains in the high density region and discuss their physical properties. In this procedure the Hamiltonian is first cast in a positive semidefinite form using composite operators as a linear combination of creation operators acting on the sites of finite blocks. In the same step, the interaction is also transformed to obtain terms which require for their minimum eigenvalue zero at least one electron on each site. The transformed Hamiltonian matches the original Hamiltonian through a nonlinear system of equations whose solutions place the deduced ground states in restricted regions of the parameter space. In the second step, nonlocal product wave functions in position space are constructed. They are proven to be unique ground states which describe non-saturated ferromagnetic and correlated half metallic states. These solutions emerge when the strength of the Hubbard interaction Ui is site-dependent inside the unit cell. In the deduced phases, the interactions tune the bare dispersive band structure such to develop an effective upper flat band. We show that this band flattening effect emerges for a broader class of chains and is not restricted to pentagon chains. For the characterization of the deduced solutions, uniqueness proofs, exact ground state expectation values for long-range hopping amplitudes and correlation functions are also calculated. The study of physical reasons which lead to the appearance of ferromagnetism has revealed a new mechanism for the emergence of an ordered phase, described here in detail. This works as follows: starting from a completely dispersive bare band structure, the interactions quench the kinetic energy, hence the ordered phase is obtained solely by a drastic decrease of the interaction energy. Since Ui are site dependent, this determinative decrease is obtained by a redistribution of the double occupancy di such to attain small di where the on-site Coulomb repulsion Ui is high, and vice versa. The kinetic energy quench leads to the upper effective flat band, whose role is to enhance by its degeneracy the switching to the ordered phase dictated and stabilized by the interactions present. It is shown that for this phenomenon to occur, a given degree of complexity is needed for the chain, and the mechanism becomes inactive when the Ui interactions are homogeneous, or are missing from the ground state wave function.

Author(s):  
Nóra Kucska ◽  
Zsolt Gulácsi

The ferromagnetism of Au nanograins is analyzed based on a two-dimensional itinerant lattice model with on-site Coulomb repulsion, many-body spin–orbit interactions, and holding two hybridized bands, one correlated and one uncorrelated. Using periodic boundary conditions in both directions, an exact ferromagnetic ground state is deduced for this non-integrable system by applying special techniques based on positive semidefinite operators.


2020 ◽  
Vol 93 (8) ◽  
Author(s):  
Oleg Derzhko ◽  
Jürgen Schnack ◽  
Dmitry V. Dmitriev ◽  
Valery Ya. Krivnov ◽  
Johannes Richter

Abstract We consider the strongly anisotropic spin-1/2 XXZ model on the sawtooth-chain lattice with ferromagnetic longitudinal interaction Jzz = ΔJ and aniferromagnetic transversal interaction Jxx = Jyy = J > 0. At Δ = −1∕2 the lowest one-magnon excitation band is dispersionless (flat) leading to a massively degenerate set of ground states. Interestingly, this model admits a three-coloring representation of the ground-state manifold [H.J. Changlani et al., Phys. Rev. Lett. 120, 117202 (2018)]. We characterize this ground-state manifold and elaborate the low-temperature thermodynamics of the system. We illustrate the manifestation of the flat-band physics of the anisotropic model by comparison with two isotropic flat-band Heisenberg sawtooth chains. Our analytical consideration is complemented by exact diagonalization and finite-temperature Lanczos method calculations. Graphical abstract


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Jun Ohara ◽  
Shoji Yamamoto

We introduce copper molybdenum cyanides of general formula Cu2[Mo(CN)8]·nH2O, which can serve as optofunctional magnetic devices. Their ground states generally stay paramagnetic down to temperatures of the K order but exhibit a spontaneous magnetization upon photoirradiation usually below a few tens of K. To interest us still further, such a ferromagnetic stateinduced by blue-laser irradiation is demagnetized step by step through further application of red or near-infrared laser pulses. We solve this intriguing photomagnetism. The ground-state properties are fully revealed by means of a group-theoretical technique. Taking account of experimental observations, we simulate applying pump laser pulses to a likely ground state and successfully reproduce both the magnetization and demagnetization dynamics. We monitor the photorelaxation process through angle-resolved photoemission spectroscopy. Electrons are fully itinerant in any of the photoinduced steady states, forming a striking contrast to the initial equilibrium state of atomic aspect. The fully demagnetized final steady state looks completely different from the initial paramagnetism but bears good analogy to one of the possible ground states available with the Coulomb repulsion on Cu sites suppressed.


1981 ◽  
Vol 59 (11) ◽  
pp. 1668-1669 ◽  
Author(s):  
Serafin Fraga

A formulation, based on the concept of null local kinetic energy regions, has been developed for the determination of lower bounds for the ground state of a two-electron atom. Numerical results, obtained from Hartree–Fock functions, are presented for the elements He through Kr of the two-electron series.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaomeng Liu ◽  
Cheng-Li Chiu ◽  
Jong Yeon Lee ◽  
Gelareh Farahi ◽  
Kenji Watanabe ◽  
...  

AbstractMoiré superlattices created by the twisted stacking of two-dimensional crystals can host electronic bands with flat energy dispersion in which enhanced interactions promote correlated electron states. The twisted double bilayer graphene (TDBG), where two Bernal bilayer graphene are stacked with a twist angle, is such a moiré system with tunable flat bands. Here, we use gate-tuned scanning tunneling spectroscopy to directly demonstrate the tunability of the band structure of TDBG with an electric field and to show spectroscopic signatures of electronic correlations and topology for its flat band. Our spectroscopic experiments are in agreement with a continuum model of TDBG band structure and reveal signatures of a correlated insulator gap at partial filling of its isolated flat band. The topological properties of this flat band are probed with the application of a magnetic field, which leads to valley polarization and the splitting of Chern bands with a large effective g-factor.


2014 ◽  
Vol 895 ◽  
pp. 420-423 ◽  
Author(s):  
Sathya Sheela Subramanian ◽  
Baskaran Natesan

Structural optimization, magnetic ground state and electronic structure calculations of tetragonal PbMnO3have been carried out using local density approximation (LDA) implementations of density functional theory (DFT). Structural optimizations were done on tetragonal P4mm (non-centrosymmetric) and P4/mmm (centrosymmetric) structures using experimental lattice parameters and our results indicate that P4mm is more stable than P4/mmm. In order to determine the stable magnetic ground state of PbMnO3, total energies for different magnetic configurations such as nonmagnetic (NM), ferromagnetic (FM) and antiferromagnetic (AFM) were computed for both P4mm and P4/mmm structures. The total energy results reveal that the FM non-centrosymmetric structure is found to be the most stable magnetic ground state. The electronic band structure, density of states (DOS) and the electron localization function (ELF) were calculated for the stable FM structure. ELF revealed the distorted non-centrosymmetric structure. The band structure and DOS for the majority spins of FM PbMnO3showed no band gap at the Fermi level. However, a gap opens up at the Fermi level in minority spin channel suggesting that it could be a half-metal and a potential spintronic candidate.


2002 ◽  
Vol 09 (01) ◽  
pp. 153-158 ◽  
Author(s):  
WEIDONG ZHOU ◽  
D. P. SECCOMBE ◽  
R. Y. L. CHIM ◽  
R. P. TUCKETT

Threshold photoelectron–photoion coincidence (TPEPICO) spectroscopy has been used to investigate the decay dynamics of the valence electronic states of the parent cation of several hydrofluorocarbons (HFC), based on fluorine-substituted ethane, in the energy range 11–25 eV. We present data for CF 3– CHF 2, CF 3– CH 2 F , CF 3– CH 3 and CHF 2– CH 3. The threshold photoelectron spectra (TPES) of these molecules show a common feature of a broad, relatively weak ground state, associated with electron removal from the highest-occupied molecular orbital (HOMO) having mainly C–C σ-bonding character. Adiabatic and vertical ionisation energies for the HOMO of the four HFCs are presented, together with corresponding values from ab initio calculations. For those lower-energy molecular orbitals associated with non-bonding fluorine 2pπ lone pair electrons, these electronic states of the HFC cation decay impulsively by C–F bond fission with considerable release of translational kinetic energy. Appearance energies are presented for formation of the daughter cation formed by such a process (e.g. CF 3– CHF +), together with ab initio energies of the corresponding dissociation channel (e.g. CF 3– CHF + + F ). Values for the translational kinetic energy released are compared with the predictions of a pure-impulsive model.


2003 ◽  
Vol 15 (03) ◽  
pp. 271-312 ◽  
Author(s):  
FUMIO HIROSHIMA

One electron system minimally coupled to a quantized radiation field is considered. It is assumed that the quantized radiation field is massless, and no infrared cutoff is imposed. The Hamiltonian, H, of this system is defined as a self-adjoint operator acting on L2 (ℝ3) ⊗ ℱ ≅ L2 (ℝ3; ℱ), where ℱ is the Boson Fock space over L2 (ℝ3 × {1, 2}). It is shown that the ground state, ψg, of H belongs to [Formula: see text], where N denotes the number operator of ℱ. Moreover, it is shown that for almost every electron position variable x ∈ ℝ3 and for arbitrary k ≥ 0, ‖(1 ⊗ Nk/2) ψg (x)‖ℱ ≤ Dk e-δ|x|m+1 with some constants m ≥ 0, Dk > 0, and δ > 0 independent of k. In particular [Formula: see text] for 0 < β < δ/2 is obtained.


Sign in / Sign up

Export Citation Format

Share Document