Performance of a multipurpose piezoelectric energy harvester

2017 ◽  
Vol 31 (07) ◽  
pp. 1741007 ◽  
Author(s):  
Kangqi Fan ◽  
Liansong Wang ◽  
Yingmin Zhu ◽  
Zhaohui Liu ◽  
Bo Yu

Harvesting energy from the surrounding environment through piezoelectric conversion is a promising method for implementing self-sustained low-power devices. To date, most piezoelectric energy harvesters (PEHs) developed can only scavenge energy from the unidirectional mechanical vibration. This deficiency severely limits the adaptability of PEHs because the real-world excitations may involve different mechanical motions and the mechanical vibration may come from various directions. To tackle this issue, we proposed a multipurpose PEH, which is composed of a ferromagnetic ball, a cylindrical track and four piezoelectric cantilever beams. In this paper, theoretical and experimental studies were carried out to examine the performance of the multipurpose PEH. The experimental results indicate that, under the vibrations that are perpendicular to the ground, the maximum peak voltage is increased by 3.2 V and the bandwidth of the voltage above 4 V is expanded by more than 4 Hz by the proposed PEH as compared to its linear counterpart; the maximum power output of 0.8 mW is attained when the PEH is excited at 39.5 Hz. Under the sway motion around different directions on the horizontal plane, significant power outputs, varying from 0.05 mW to 0.18 mW, are also generated by the multipurpose PEH when the sway angle is larger than 5[Formula: see text] and the sway frequency is smaller than 2.8 Hz. In addition, the multipurpose PEH demonstrates the capacity of collecting energy from the rotation motion, and approximately 0.14 mW power output is achieved when the rotation frequency is 1 Hz.

2017 ◽  
Vol 31 (07) ◽  
pp. 1741011 ◽  
Author(s):  
Kangqi Fan ◽  
Bo Yu ◽  
Yingmin Zhu ◽  
Zhaohui Liu ◽  
Liansong Wang

Scavenging energy from human motion through piezoelectric transduction has been considered as a feasible alternative to batteries for powering portable devices and realizing self-sustained devices. To date, most piezoelectric energy harvesters (PEHs) developed can only collect energy from the uni-directional mechanical vibration. This deficiency severely limits their applicability to human motion energy harvesting because the human motion involves diverse mechanical motions. In this paper, a novel PEH is proposed to harvest energy from the motion of human lower limbs. This PEH is composed of two piezoelectric cantilever beams, a sleeve and a ferromagnetic ball. The two beams are designed to sense the vibration along the tibial axis and conduct piezoelectric conversion. The ball senses the leg swing and actuates the two beams to vibrate via magnetic coupling. Theoretical and experimental studies indicate that the proposed PEH can scavenge energy from both the vibration and the swing. During each stride, the PEH can produce multiple peaks in voltage output, which is attributed to the superposition of different excitations. Moreover, the root-mean-square (RMS) voltage output of the PEH increases when the walking speed ranges from 2 to 8 km/h. In addition, the ultra-low frequencies of human motion are also up-converted by the proposed design.


2018 ◽  
Vol 29 (9) ◽  
pp. 1875-1883 ◽  
Author(s):  
Shan Zeng ◽  
Chunwei Zhang ◽  
Kaifa Wang ◽  
Baolin Wang ◽  
Li Sun

Unimorph piezoelectric energy harvesters are typically a unimorph cantilever beam located on a vibrating host structure. Delamination is one of the major failure modes of such unimorph cantilevers and therefore is studied in this article. The delaminated cantilever unimorph is modeled with one through-width crack using four Euler beams connected at delamination edges. The governing equations, the corresponding boundary conditions, and the kinematic continuity conditions are derived based on the Hamiltonian principle. The solutions of the voltage and power output for the present model are derived. The influence of the position and the length of the delamination, frequency of input base excitation, and load resistance on the voltage and power output are discussed in detail. The results show that delamination in the unimorph of the energy harvester will impressively decrease the voltage and power outputs. Influences of the delamination located at the free end of the cantilever are more obvious. For a given active length of the delaminated cantilever energy harvester, it is useful to increase the overall length of the cantilever to obtain a higher voltage and power outputs.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1206 ◽  
Author(s):  
Wei-Jiun Su ◽  
Jia-Han Lin ◽  
Wei-Chang Li

This paper investigates a piezoelectric energy harvester that consists of a piezoelectric cantilever and a tip mass for horizontal rotational motion. Rotational motion results in centrifugal force, which causes the axial load on the beam and alters the resonant frequency of the system. The piezoelectric energy harvester is installed on a rotational hub in three orientations—inward, outward, and tilted configurations—to examine their influence on the performance of the harvester. The theoretical model of the piezoelectric energy harvester is developed to explain the dynamics of the system and experiments are conducted to validate the model. Theoretical and experimental studies are presented with various tilt angles and distances between the harvester and the rotating center. The results show that the installation distance and the tilt angle can be used to adjust the resonant frequency of the system to match the excitation frequency.


Author(s):  
Jesse J. French ◽  
Colton T. Sheets

Wind energy capture in today’s environment is often focused on producing large amounts of power through massive turbines operating at high wind speeds. The device presented by the authors performs on the extreme opposite scale of these large wind turbines. Utilizing vortex induced vibration combined with developed and demonstrated piezoelectric energy harvesting techniques, the device produces power consistent with peer technologies in the rapidly growing field of micro-energy harvesting. Vortex-induced vibrations in the Karman vortex street are the catalyst for energy production of the device. To optimize power output, resonant frequency of the harvester is matched to vortex shedding frequency at a given wind speed, producing a lock-on effect that results in the greatest amplitude of oscillation. The frequency of oscillation is varied by altering the effective spring constant of the device, thereby allowing for “tuning” of the device to specific wind environments. While localized wind conditions are never able to be predicted with absolute certainty, patterns can be established through thorough data collection. Sampling of local wind conditions led to the design and testing of harvesters operating within a range of wind velocities between approximately 4 mph and 25 mph. For the extremities of this range, devices were constructed with resonant frequencies of approximately 17 and 163 Hz. Frequency variation was achieved through altering the material composition and geometry of the energy harvester. Experimentation was performed on harvesters to determine power output at optimized fluid velocity, as well as above and below. Analysis was also conducted on shedding characteristics of the device over the tested range of wind velocities. Computational modeling of the device is performed and compared to experimentally produced data.


Author(s):  
Hu¨seyin Dog˘us¸ Akaydın ◽  
Niell Elvin ◽  
Yiannis Andreopoulos

In the present experimental work, we explore the possibility of using piezoelectric based fluid flow energy harvesters. These harvesters are self-excited and self-sustained in the sense that they can be used in steady uniform flows. The configuration consists of a piezoelectric cantilever beam with a cylindrical tip body which promotes sustainable, aero-elastic structural vibrations induced by vortex shedding and galloping. The structural and aerodynamic properties of the harvester alter the vibration amplitude and frequency of the piezoelectric beam and thus its electrical output. This paper presents results of energy-harvesting tests with one configuration of such a self-excited piezoelectric harvester using a PZT bimorph. In addition to the electrical voltage output, the strain on the surface of beam close to its clamped tip was also measured The measured strain and voltage output were perfectly correlated in the frequency range containing the first natural mode of vibration of the system. It was observed that about 0.24 mW of electrical power can be attained with this harvester in a uniform flow of 28 m/s.


Author(s):  
Mohid Muneeb Khattak ◽  
Christopher Sugino ◽  
Alper Erturk

We investigate piezoelectric energy harvesting on a locally resonant metamaterial beam for concurrent power generation and bandgap formation. The mechanical resonators (small beam attachments on the main beam structure) have piezoelectric elements which are connected to electrical loads to quantify their electrical output in the locally resonant bandgap neighborhood. Electromechanical model simulations are followed by detailed experiments on a beam setup with nine resonators. The main beam is excited by an electrodynamic shaker from its base over the frequency range of0–150 Hz and the motion at the tip is measured using a laser Doppler vibrometer to extract its transmissibility frequency response. The formation of a locally resonant bandgap is confirmed and a resistor sweep is performed for the energy harvesters to capture the optimal power conditions. Individual power outputs of the harvester resonators are compared in terms of their percentage contribution to the total power output. Numerical and experimental analysis shows that, inside the locally resonant bandgap, most of the vibrational energy (and hence harvested energy) is localized near the excited base of the beam, and the majority of the total harvested power is extracted by the first few resonators.


2021 ◽  
Author(s):  
Αντιόπη-Μαλβίνα Σταματέλλου

Η πιεζοηλεκτρική συγκομιδή ενέργειας αφορά στην εκμετάλλευση μικροποσοτήτων ενέργειας από το περιβάλλον στην κλίμακα των mW, με βάση την αρχή του πιεζο-ηλεκτρικού φαινομένου. Ερευνάται εντατικά την τελευταία 20-ετία με στόχο να τροφοδοτηθούν απομακρυσμένα ασύρματα δίκτυα αισθητήρων, μικροηλεκτρονικές και βιοϊατρικές συσκευές στα πλαίσια της ευρείας διάδοσης του IoT, αποφεύγοντας τη χρήση συσσωρευτών και καλωδιώσεων. Παρά την σημαντική ερευνητική προσπάθεια οι τεχνολογίες της πιεζοηλεκτρικής συγκομιδής ενέργειας (PEH) ευρίσκονται ακόμη σε χαμηλό επίπεδο τεχνολογικής ετοιμότητας και υπάρχουν λίγες μόνο ολοκληρωμένες εφαρμογές. Έχοντας διαπιστώσει σχετική έλλειψη σε πειραματικές διερευνήσεις έναντι των καθαρά θεωρητικών, επιλέχθηκε ως κύριος αντικειμενικός στόχος της εργασίας η υποστήριξη της διαδικασίας σχεδιασμού των PEH μέσω πειραματικής διερεύνησης των χαρακτηριστικών λειτουργίας εμπορικά διαθέσιμων πιεζοηλεκτρικών μετατροπέων και ορισμού κατάλληλων δεικτών αξιολόγησης του βαθμού απόδοσης και της ειδικής ισχύος τους. Με τον τρόπο αυτό γίνεται εφικτή η δίκαια αξιολόγηση της πραγματικής απόδοσης των PEH κάτω από ελεγχόμενες συνθήκες ροϊκά επαγόμενης και μηχανικής ταλάντωσης. Οι εργαστηριακές δοκιμές πραγματοποιήθηκαν σε καινοτόμα σχεδιασμένες πειραματικές διατάξεις που κατασκευάστηκαν ειδικά για τις ανάγκες της διατριβής. Η επεξεργασία των αποτελεσμάτων έγινε τόσο με συμβατικές όσο και με καινοτόμες μεθόδους. Οι συγκεκριμένες διατάξεις επιτρέπουν την συστηματική αξιολόγηση της απόδοσης σε συνδυασμό ευρείας περιοχής συχνοτήτων ταλάντωσης βάσης και συνθηκών ροής, ώστε να γίνεται εφικτή η χαρτογράφηση σε δύο διαστάσεις της ειδικής ισχύος και του βαθμού απόδοσης. Αντίθετα με την επικρατούσα πρακτική του ορισμού βαθμού απόδοσης με βάση θεωρητικό γραμμικό μοντέλο της ταλάντωσης, διατυπώθηκε καινοτόμος ορισμός με βάση το ρυθμό μεταβολής της ελαστικής ενέργειας του πιεζοηλεκτρικού στοιχείου. Ο προτεινόμενος ορισμός είναι πιο ρεαλιστικός, αφού η ελαστική ενέργεια παραμόρφωσης κατέστη δυνατόν να μετρηθεί με βάση μεθοδολογία ψηφιοποίησης της ελαστικής γραμμής με χρήση γραμμικού laser που επιτρέπει την οπτικοποίηση με φωτογράφηση, αλλά και με βάση βιντεοσκόπηση σε 960 fps της ταλάντωσης. Έχει δε το πρόσθετο πλεονέκτημα ότι μπορεί να εφαρμοστεί και σε συνδυασμένη ροϊκή και μηχανική διέγερση. Η εργασία έλαβε υπόψη τον λεπτομερή σχεδιασμό των εξεταζόμενων πιεζοηλεκτρικών αισθητήρων, ως σύνθετης πλάκας σε καμπτική ταλάντωση, στους υπολογισμούς ελαστικής ενέργειας παραμόρφωσης, ειδικής ισχύος και βαθμού απόδοσης. Έγινε συγκριτική αξιολόγηση, με βάση την αναπτυχθείσα μεθοδολογία, δύο αντιπροσωπευτικών αισθητήρων με διαφορετικό πιεζοηλεκτρικό υλικό (PZT και PVDF), με επιπλέον χρήση υπερ-πυκνωτών (super capacitors) στο κύκλωμα αποθήκευσης της ηλεκτρικής ενέργειας, η οποία οδήγησε σε περαιτέρω αύξηση του βαθμού απόδοσης. Η συγκριτική αξιολόγηση των αισθητήρων αυτών οδήγησε σε χρήσιμα συμπεράσματα για περαιτέρω βελτιώσεις στο λεπτομερή σχεδιασμό τους, με στόχο την αύξηση της ειδικής ισχύος και βαθμού απόδοσης. Έγινε δε εφικτό να διεγερθεί ροϊκά ο μετατροπέας από PZT, υψηλής καμπτικής στιβαρότητας, με τοποθέτηση στο ελεύθερο άκρο του ειδικά σχεδιασμένης υπερκατασκευής, οπότε και επιβεβαιώθηκε ότι η συνδυασμένη διέγερση του συγκεκριμένου τύπου μετατροπέα ικανοποιεί την αρχή της επαλληλίας. Η νέα αυτή οπτική επιτρέπει την ορθολογική πλέον αξιολόγηση της απόδοσης διαφορετικού τύπου και σχεδιασμού αισθητήρων και παρέχει εξηγήσεις σχετικά με τις μεγάλες διακυμάνσεις των μεγεθών αυτών στην εξειδικευμένη βιβλιογραφία. Επιπλέον συνεισφέρει στην ορθολογική βελτιστοποίηση του σχεδιασμού των μετατροπέων ως σύνθετων πλακών, ώστε να ανταποκρίνονται στις ανάγκες συγκεκριμένων εφαρμογών, με λήψη υπόψη των επιπέδων διέγερσης των πηγών και τις διαθέσιμες θέσεις ταλάντωσης.


2012 ◽  
Vol 1397 ◽  
Author(s):  
Seon-Bae Kim ◽  
Jung-Hyun Park ◽  
Seung-Hyun Kim ◽  
Hosang Ahn ◽  
H. Clyde Wikle ◽  
...  

ABSTRACTA transverse (d33) mode piezoelectric cantilever was fabricated for energy harvesting. Various dimensions of interdigital electrodes (IDE) were deposited on a piezoelectric layer to examine the effects of electrode design on the performance of energy harvesters. Modeling was performed to calculate the output power of the devices. The estimation was based on Roundy’s analytical modeling derived for a d31 mode piezoelectric energy harvester (PEH). In order to apply the Roundy’s model to d33 mode PEH, the IDE configuration was converted to the area of top and bottom electrodes (TBE). The power conversion in d33 mode PEH was commonly estimated by the product of piezoelectric layer’s thickness and finger electrode’s length. In addition, the spacing between fingers was regarded as gap between top and bottom electrodes. However, the output power in a transverse mode PEH increases continuously with the increase of finger spacing, which does not correspond to experimental results. In this research, the dimension of IDE was converted to that of TBE using conformal mapping, and variation of power of PEH was remodeled. The modified model suggests that the maximum power in a transverse mode PEH is obtained when the finger spacing is identical with effective finger spacing. The output power then decreases when finger spacing is larger than effective finger spacing. The decrease of efficiency may result from insufficient degree of poling and increased charged defect with increasing finger spacing.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Kangkang Guo ◽  
Shuqian Cao ◽  
Shiyu Wang

A piezo-magneto-elastically coupled distributed-parameter model of a bistable piezoelectric cantilever generator is developed by using the generalized Hamilton principle. The influence of the spacing between two adjacent magnets on the static bifurcation characteristics of the system is studied and the range of magnet spacing corresponding to the bistable states is obtained. Numerical and experimental studies are carried out to analyze the bifurcation, response characteristics, and their impact on the electrical output performance under varying external excitations. Results indicate that interwell limit cycle motion of the beam around the two centers corresponds to optimum power output; interwell chaotic motion and multiperiodic motion including intrawell oscillations are less effective. At a given frequency, the phenomena of symmetric-breaking and amplitude-phase modulation are observed with increase of base excitation. Both period-doubling bifurcation and intermittency routes to chaotic motion in the bistable system are found. It can be observed that the power output is not proportional to the excitation level because of the bifurcation behaviours.


2015 ◽  
Vol 23 (15) ◽  
pp. 2538-2553 ◽  
Author(s):  
Ahmed Jemai ◽  
Fehmi Najar ◽  
Moez Chafra

The use of a multilayer piezoelectric cantilever beam for vibration-based energy harvesting applications has been investigated as an effective technique to increase the harvested electrical power. It has been shown that the multilayered energy harvester performance is very sensitive to the number of layers and their electrical connection due to impedance variations. The objective of this work is to suggest a comprehensive mathematical model of multilayered unimorph piezoelectric energy harvester allowing analytical solution for the harvested voltage and electrical power. The model is used to deeply investigate the influence of different parameters on the harvested power. A distributed-parameter model of the harvester using the Euler–Bernoulli beam theory and Hamilton's principle is derived. Gauss's law is used to derive the electrical equations for parallel and series connections. A closed-form solution is proposed based on the Galerkin procedure and the obtained results are validated with a finite element 3D model. A parametric study is performed to ascertain the influence of the load resistance, the thickness ratio, the number of piezoelectric layers on the tip displacement and the electrical harvested power. It is shown that this model can be easily used to adjust the geometrical and electrical parameters of the energy harvester in order to improve the system's performances. In addition, it is proven that if one of the system's parameter is not correctly tuned, the harvested power can decrease by several orders of magnitude.


Sign in / Sign up

Export Citation Format

Share Document