Parametric analysis of multilayered unimorph piezoelectric vibration energy harvesters

2015 ◽  
Vol 23 (15) ◽  
pp. 2538-2553 ◽  
Author(s):  
Ahmed Jemai ◽  
Fehmi Najar ◽  
Moez Chafra

The use of a multilayer piezoelectric cantilever beam for vibration-based energy harvesting applications has been investigated as an effective technique to increase the harvested electrical power. It has been shown that the multilayered energy harvester performance is very sensitive to the number of layers and their electrical connection due to impedance variations. The objective of this work is to suggest a comprehensive mathematical model of multilayered unimorph piezoelectric energy harvester allowing analytical solution for the harvested voltage and electrical power. The model is used to deeply investigate the influence of different parameters on the harvested power. A distributed-parameter model of the harvester using the Euler–Bernoulli beam theory and Hamilton's principle is derived. Gauss's law is used to derive the electrical equations for parallel and series connections. A closed-form solution is proposed based on the Galerkin procedure and the obtained results are validated with a finite element 3D model. A parametric study is performed to ascertain the influence of the load resistance, the thickness ratio, the number of piezoelectric layers on the tip displacement and the electrical harvested power. It is shown that this model can be easily used to adjust the geometrical and electrical parameters of the energy harvester in order to improve the system's performances. In addition, it is proven that if one of the system's parameter is not correctly tuned, the harvested power can decrease by several orders of magnitude.

Author(s):  
Wei-Jiun Su ◽  
Jean W. Zu

Piezoelectric material has been widely utilized in vibration-based energy harvesters (VEH). The most common configuration of piezoelectric energy harvester is a cantilevered beam with unimorph or bimorph piezoelectric layers. In this paper, a new configuration of PEH is proposed. Two beams are assembled as V shape with tip masses attached. The first beam is a cantilevered beam with tip mass while the second beam is attached to the end of the first beam with a certain angle. Piezoelectric layers are attached to both beams in unimorph configuration for power generation. The analytical solution is derived based on Euler-Bernoulli beam theory. In this analysis, the angle varies from 0 to 135 degree to see the influence of angle on voltage and power frequency response. The V-shaped VEH is proven to have the second resonant frequency relatively close to the first resonant frequency when compared with conventional cantilevered VEH. Furthermore, the angle between the two beams will influence the ratio of the second to the first resonant frequency. By choosing a suitable angle, the V-shaped structure can effectively broaden the bandwidth.


2021 ◽  
Vol 13 (5) ◽  
pp. 2865 ◽  
Author(s):  
Sungryong Bae ◽  
Pilkee Kim

In this study, optimization of the external load resistance of a piezoelectric bistable energy harvester was performed for primary harmonic (period-1T) and subharmonic (period-3T) interwell motions. The analytical expression of the optimal load resistance was derived, based on the spectral analyses of the interwell motions, and evaluated. The analytical results are in excellent agreement with the numerical ones. A parametric study shows that the optimal load resistance depended on the forcing frequency, but not the intensity of the ambient vibration. Additionally, it was found that the optimal resistance for the period-3T interwell motion tended to be approximately three times larger than that for the period-1T interwell motion, which means that the optimal resistance was directly affected by the oscillation frequency (or oscillation period) of the motion rather than the forcing frequency. For broadband energy harvesting applications, the subharmonic interwell motion is also useful, in addition to the primary harmonic interwell motion. In designing such piezoelectric bistable energy harvesters, the frequency dependency of the optimal load resistance should be considered properly depending on ambient vibrations.


Author(s):  
Hu¨seyin Dog˘us¸ Akaydın ◽  
Niell Elvin ◽  
Yiannis Andreopoulos

In the present experimental work, we explore the possibility of using piezoelectric based fluid flow energy harvesters. These harvesters are self-excited and self-sustained in the sense that they can be used in steady uniform flows. The configuration consists of a piezoelectric cantilever beam with a cylindrical tip body which promotes sustainable, aero-elastic structural vibrations induced by vortex shedding and galloping. The structural and aerodynamic properties of the harvester alter the vibration amplitude and frequency of the piezoelectric beam and thus its electrical output. This paper presents results of energy-harvesting tests with one configuration of such a self-excited piezoelectric harvester using a PZT bimorph. In addition to the electrical voltage output, the strain on the surface of beam close to its clamped tip was also measured The measured strain and voltage output were perfectly correlated in the frequency range containing the first natural mode of vibration of the system. It was observed that about 0.24 mW of electrical power can be attained with this harvester in a uniform flow of 28 m/s.


Author(s):  
P. B. Jain ◽  
M. R. Cacan ◽  
S. Leadenham ◽  
C. De Marqui ◽  
A. Erturk

The harvesting of flow energy by exploiting aeroelastic and hydroelastic vibrations has received growing attention over the last few years. The goal in this research field is to generate low-power electricity from flow-induced vibrations of scalable structures involving a proper transduction mechanism for wireless applications ranging from manned/unmanned aerial vehicles to civil infrastructure systems located in high wind areas. The fundamental challenge is to enable geometrically small flow energy harvesters while keeping the cut-in speed (lowest flow speed that induces persistent oscillations) low. An effective design with reduced cut-in speed is known to be the T-shaped cantilever arrangement that consists of a horizontal piezoelectric cantilever with a perpendicular vertical beam attachment at the tip. The direction of incoming flow is parallel to the horizontal cantilever and perpendicular to the vertical and symmetric tip attachment. Vortex-induced vibration resulting from flow past the tip attachment is the source of the aeroelastic response. For a given width of the T-shaped harvester with fixed thickness parameters, an important geometric parameter is the length ratio of the tip attachment to the cantilever. In this paper we investigate the effect of this geometric parameter on the piezoaeroelastic response of a T-shaped flow energy harvester. A controlled desktop wind tunnel system is used to characterize the electrical and mechanical response characteristics for broad ranges of flow speed and electrical load resistance using different vertical tip attachment lengths for the same horizontal piezoelectric cantilever. The variations of the electrical power output and cut-in speed with changing head length are reported along with an investigation into the electroaeroelastic frequency response spectra.


2012 ◽  
Vol 1397 ◽  
Author(s):  
Seon-Bae Kim ◽  
Jung-Hyun Park ◽  
Seung-Hyun Kim ◽  
Hosang Ahn ◽  
H. Clyde Wikle ◽  
...  

ABSTRACTA transverse (d33) mode piezoelectric cantilever was fabricated for energy harvesting. Various dimensions of interdigital electrodes (IDE) were deposited on a piezoelectric layer to examine the effects of electrode design on the performance of energy harvesters. Modeling was performed to calculate the output power of the devices. The estimation was based on Roundy’s analytical modeling derived for a d31 mode piezoelectric energy harvester (PEH). In order to apply the Roundy’s model to d33 mode PEH, the IDE configuration was converted to the area of top and bottom electrodes (TBE). The power conversion in d33 mode PEH was commonly estimated by the product of piezoelectric layer’s thickness and finger electrode’s length. In addition, the spacing between fingers was regarded as gap between top and bottom electrodes. However, the output power in a transverse mode PEH increases continuously with the increase of finger spacing, which does not correspond to experimental results. In this research, the dimension of IDE was converted to that of TBE using conformal mapping, and variation of power of PEH was remodeled. The modified model suggests that the maximum power in a transverse mode PEH is obtained when the finger spacing is identical with effective finger spacing. The output power then decreases when finger spacing is larger than effective finger spacing. The decrease of efficiency may result from insufficient degree of poling and increased charged defect with increasing finger spacing.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Amin Bibo ◽  
Abdessattar Abdelkefi ◽  
Mohammed F. Daqaq

This paper develops and validates an aero-electromechanical model which captures the nonlinear response behavior of a piezoelectric cantilever-type energy harvester under combined galloping and base excitations. The harvester consists of a thin piezoelectric cantilever beam clamped at one end and rigidly attached to a bluff body at the other end. In addition to the vibratory base excitations, the beam is also subjected to aerodynamic forces resulting from the separation of the incoming airflow on both sides of the bluff body which gives rise to limit-cycle oscillations when the airflow velocity exceeds a critical value. A nonlinear electromechanical distributed-parameter model of the harvester under the combined excitations is derived using the energy approach and by adopting the nonlinear Euler–Bernoulli beam theory, linear constitutive relations for the piezoelectric transduction, and the quasi-steady assumption for the aerodynamic loading. The resulting partial differential equations of motion are discretized and a reduced-order model is obtained. The mathematical model is validated by conducting a series of experiments at different wind speeds and base excitation amplitudes for excitation frequencies around the primary resonance of the harvester. Results from the model and experiment are presented to characterize the response behavior under the combined loading.


Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 667 ◽  
Author(s):  
Jinda Jia ◽  
Xiaobiao Shan ◽  
Deepesh Upadrashta ◽  
Tao Xie ◽  
Yaowen Yang ◽  
...  

This paper presents an upright piezoelectric energy harvester (UPEH) with cylinder extension along its longitudinal direction. The UPEH can generate energy from low-speed wind by bending deformation produced by vortex-induced vibrations (VIVs). The UPEH has the advantages of less working space and ease of setting up an array over conventional vortex-induced vibration harvesters. The nonlinear distributed modeling method is established based on Euler–Bernoulli beam theory and aerodynamic vortex-induced force of the cylinder is obtained by the van der Pol wake oscillator theory. The fluid–solid–electricity governing coupled equations are derived using Lagrange’s equation and solved through Galerkin discretization. The effect of cylinder gravity on the dynamic characteristics of the UPEH is also considered using the energy method. The influences of substrate dimension, piezoelectric dimension, the mass of cylinder extension, and electrical load resistance on the output performance of harvester are studied using the theoretical model. Experiments were carried out and the results were in good agreement with the numerical results. The results showed that a UPEH configuration achieves the maximum power of 635.04 μW at optimum resistance of 250 kΩ when tested at a wind speed of 4.20 m/s. The theoretical results show that the UPEH can get better energy harvesting output performance with a lighter tip mass of cylinder, and thicker and shorter substrate in its synchronization working region. This work will provide the theoretical guidance for studying the array of multiple upright energy harvesters.


Author(s):  
Hichem Abdelmoula ◽  
Abdessattar Abdelkefi

The characteristics and performance of piezoelectric energy harvesters concurrently subjected to galloping and base excitations when using a complex electrical circuit are studied. The considered energy harvester is composed of a bilayered cantilever beam with a square cylindrical structure at its tip. Euler-Bernoulli beam theory, nonlinear quasi-steady hypothesis, and Galerkin method are used to develop a reduced order model of this system. The electrical circuitry of the harvester consists of a load resistance, a capacitance, and an inductance. The impacts of the electrical components of the harvester’s circuitry, the wind speed, and the base excitation frequency and acceleration on the broadband characteristics of the harvester, quenching phenomenon, and appearance of new nonlinear behaviors are deeply investigated and discussed. When both coupled frequencies of electrical and mechanical types exists and are far from each other, it is shown that the quenching phenomenon is only related to the coupled frequency of mechanical type. Unlike the existence of the quenching phenomenon, the results show that the beating phenomenon takes place for different excitation frequencies when they are close to the coupled frequencies of electrical and mechanical types.


2008 ◽  
Vol 20 (5) ◽  
pp. 529-544 ◽  
Author(s):  
Alper Erturk ◽  
Jamil M. Renno ◽  
Daniel J. Inman

Cantilevered piezoelectric energy harvesters have been extensively investigated in the literature of energy harvesting. As an alternative to conventional cantilevered beams, this article presents the L-shaped beam-mass structure as a new piezoelectric energy harvester configuration. This structure can be tuned to have the first two natural frequencies relatively close to each other, resulting in the possibility of a broader band energy harvesting system. This article describes the important features of the L-shaped piezoelectric energy harvester configuration and develops a linear distributed parameter model for predicting the electromechanically coupled voltage response and displacement response of the harvester structure. After deriving the coupled distributed parameter model, a case study is presented to investigate the electrical power generation performance of the L-shaped energy harvester. A direct application of the L-shaped piezoelectric energy harvester configuration is proposed for use as landing gears in unmanned air vehicle applications and a case study is presented where the results of the L-shaped — energy harvester — landing gear are favorably compared against the published experimental results of a curved beam configuration used for the same purpose.


2018 ◽  
Vol 159 ◽  
pp. 01052
Author(s):  
Ismoyo Haryanto ◽  
Achmad Widodo ◽  
Toni Prahasto ◽  
Djoeli Satrijo ◽  
Iswan Pradiptya ◽  
...  

Due to a large oscillation amplitude, galloping can be an admissible scenario to actuate the piezoelectric-based energy harvester. In the case of harvesting energy from galloping vibrations, a prismatic bluff body is attached on the free end of a piezoelectric cantilever beam and the oscillation occurs in a plane normal to the incoming flow. The electrical power then can be extracted from the piezoelectric sheet bonded in the cantilever structure due to the dynamic strain. This study is proposed to develop a theoretical model of a galloping-based piezoelectric energy harvester. A FEM procedure is utilized to determine dynamic characteristics of the structure. Whereas the aerodynamic lift and drag coefficients of the tip bluff body are determined using CDF. The results show that the present method gives precise results of the power generated by harvester. It was found that D-section yields the greatest galloping behavior and hence the maximum power.


Sign in / Sign up

Export Citation Format

Share Document