Nonlinear optical absorption in the core shell nanowire

2017 ◽  
Vol 31 (23) ◽  
pp. 1750164 ◽  
Author(s):  
Mohammad Kouhi

In this paper, the effect of incident light intensity, relaxation time, core radius and shell thickness on linear, nonlinear, total optical absorption coefficients and refractive index changes in [Formula: see text] core–shell nanowire are theoretically investigated. The presented nanostructure is a cylindrical quantum wire including a shell around the cylinder core. By numerical solution of Schrödinger equation in the cylindrical coordinates with effective mass approximation, the optical absorption coefficients are calculated. The results show that the magnitude of optical absorption coefficients can be adjusted by varying the relaxation time. The positions of resonant peaks of optical absorption coefficients are redshifted by increase of core radius due to decrease of the energy difference between two energy levels. With increase of shell thickness initially, the resonance wavelength of absorption coefficient increases (redshift) and magnitude of absorption coefficient decreases. Then with more increases of the shell thickness, redshifting of resonance wavelength is stopped and magnitude of absorption coefficient is increased. There is a significant increase in the refractive index change with increase of relaxation time.

2017 ◽  
Vol 6 (1) ◽  
pp. 121-125 ◽  
Author(s):  
Menberu Mengesha Woldemariam

The change in optical absorption coefficients and refractive index in GaAs-AlGaAs asymmetric parabolic double quantum wells (DQWs) with applied electric field are studied in detail. Analytical expressions for the linear, nonlinear and total intersubband absorption coefficient and refractive index changes are obtained by using compact density matrix approach. It is found that the magnitude of the nonlinear part of the change in refractive index and absorption coefficients are larger than the linear part in the given frequency region. The value of the total change in refractive index is negative and the asymmetric DQWs becomes left handed media. This property is of great importance for metamaterials science and can contribute substantially to the present search for simple and inexpensive left handed media. Moreover the negative value of the total change in absorption coefficient may be used for developing optical device such as maser at different frequency regime.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1728
Author(s):  
Joshua Fernandes ◽  
Sangmo Kang

The near-field enhancement and localized surface plasmon resonance (LSPR) on the core-shell noble metal nanostructure surfaces are widely studied for various biomedical applications. However, the study of the optical properties of new plasmonic non-spherical nanostructures is less explored. This numerical study quantifies the optical properties of spherical and non-spherical (prolate and oblate) dimer nanostructures by introducing finite element modelling in COMSOL Multiphysics. The surface plasmon resonance peaks of gold nanostructures should be understood and controlled for use in biological applications such as photothermal therapy and drug delivery. In this study, we find that non-spherical prolate and oblate gold dimers give excellent tunability in a wide range of biological windows. The electromagnetic field enhancement and surface plasmon resonance peak can be tuned by varying the aspect ratio of non-spherical nanostructures, the refractive index of the surrounding medium, shell thickness, and the distance of separation between nanostructures. The absorption spectra exhibit considerably greater dependency on the aspect ratio and refractive index than the shell thickness and separation distance. These results may be essential for applying the spherical and non-spherical nanostructures to various absorption-based applications.


2017 ◽  
Vol 38 (5) ◽  
pp. 580-586
Author(s):  
陈知红 CHEN Zhi-hong ◽  
李钱光 LI Qian-guang ◽  
易煦农 YI Xu-nong ◽  
余华清 YU Hua-qing ◽  
熊良斌 XIONG Liang-bin

Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 124 ◽  
Author(s):  
Mourad Baira ◽  
Bassem Salem ◽  
Niyaz Madhar ◽  
Bouraoui Ilahi

Intersubband optical transitions, refractive index changes, and absorption coefficients are numerically driven for direct bandgap strained GeSn/Ge quantum dots. The linear, third-order nonlinear and total, absorption coefficients and refractive index changes are evaluated over useful dot sizes’ range ensuring p-like Γ-electron energy state to be lower than s-like L-electron energy state. The results show strong dependence of the total absorption coefficient and refractive index changes on the quantum dot sizes. The third order nonlinear contribution is found to be sensitive to the incident light intensity affecting both total absorption coefficient and refractive index changes, especially for larger dot sizes.


Sign in / Sign up

Export Citation Format

Share Document