Corrosion behaviors of 316LN stainless steel joints brazed with Sn-plated silver filler metals

2018 ◽  
Vol 32 (16) ◽  
pp. 1850198 ◽  
Author(s):  
Xingxing Wang ◽  
Shuai Li ◽  
Jin Peng

AgCuZnSn filler metals were prepared from the BAg34CuZnSn filler metal by a combinative process of brush plating and thermal diffusion, and the prepared filler metals were applied to the induction brazing of the 316LN stainless steel. The corrosion behaviors of the brazed joints was evaluated based on local corrosion analyses, where the morphology of the joints was analyzed by scanning electron microscopy (SEM) after immersion in a 3.5 wt.% NaCl aqueous solution and electrolytic etching in a 10 vol.% oxalic acid solution. The microstructure of the brazed joints with the Sn-plated filler mainly consisted of the Ag phase, Cu phase, CuZn phase, Cu5Zn8 phase, Cu[Formula: see text]Sn[Formula: see text] phase and Ag3Sn phase. The local corrosion analysis results indicated that galvanic corrosion occurred near the interface between the stainless steel base metal and the brazing seam. With increasing local corrosion time, the corrosion rates of both the brazing seam and the base metal first exhibited an increasing trend, followed by a decreasing trend, and the corrosion rate of the brazing seam was slightly greater than that of the base metal. The corrosion behaviors analysis indicated that the corrosion resistance of the brazing seam was reduced, and concave defects emerged after electrolytic etching for 90 s.

2007 ◽  
Vol 345-346 ◽  
pp. 275-278
Author(s):  
Dae Whan Kim ◽  
Chang Hee Han ◽  
Woo Seog Ryu

Tensile and fatigue properties were evaluated for base and welded type 316LN stainless steel. Welding methods were GTAW (308L, Ar environment) and GTAWN (316L, Ar + N2 environment). Yield strength of weld joint was higher than that of base metal but elongation of weld joint was lower than that of base metal. UTS of weld joint was slightly lower than that of base metal. Yield strength and elongation with welding method were almost same. Fatigue life of weld joint was lower than that of base metal but fatigue strength of weld joint was higher than that of base metal. Ferrite content was increased with welding. Fatigue life welded by GTAWN was better than that of GTAW at RT and 600°C. This fatigue life behavior was consistent with the behavior of ferrite content.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1603 ◽  
Author(s):  
Chieh Lin ◽  
Ren-Kae Shiue ◽  
Shyi-Kaan Wu ◽  
Tsung-En Yang

The wettability, microstructures, and bonding strength of infrared brazing Ti-15-3 and Ti50Ni50 shape memory alloy using 72Ag-28Cu (wt.%) and 68.8Ag-26.7Cu-4.5Ti (wt.%) filler metals have been investigated. Only Ticusil® active braze readily wets both Ti50Ni50 and Ti-15-3 substrates. Wetting of eutectic 72Ag-28Cu melt on Ti50Ni50 base metal is greatly ameliorated by adding 4.5 wt.% Ti into the alloy. The brazed Ti-15-3/BAg-8/Ti50Ni50 joint consists of Cu-Ti intermetallics in the Ag-rich matrix. The formation of interfacial Cu(Ti,V) and (CuxNi1−x)2Ti intermetallics next to Ti-15-3 and Ti50Ni50 substrates, respectively, is attributed to the wetting of both substrates. The brazed Ti-15-3/Ticusil®/Ti50Ni50 joint shows a vigorous reaction, which results in the formation of a large amount of Ti2Ni intermetallics in the joint. The maximum joint strengths using BAg-8 and Ticusil® filler metals are 197 MPa and 230 MPa, respectively.


2014 ◽  
Vol 922 ◽  
pp. 322-327 ◽  
Author(s):  
Kengo Kaiwa ◽  
Shinji Yaoita ◽  
Tomohiro Sasaki ◽  
Takehiko Watanabe

This study focuses on understanding the effect of Ni and Co additions to filler metals on Ag-brazed joints of cemented carbide and martensitic stainless steel. Ni and Co added braze alloys were processed based on Ag-Cu-Zn ternary alloy, and joint strength and microstructure of the brazed layer has been investigated. The joint strength increased by the 2.0mass%Ni and 0.5mass%Co addition into braze alloy. This trend is remarkable in the Co added alloy, and the brazed joint increased by 141% compared to that in no-added alloy. The joint strength was closely related to the suppression effect of Co dissolution from cemented carbide into filler layer and Fe diffusion from the stainless steel to the brazed layer. In the brazed microstructure, Co-depleted zone caused by dissolution of Co in the cemented carbide was observed near the interface between the cemented carbide and the steel. Width of the Co-depleted zone significantly decreased in the Co added alloy. However, the joint strength decreased in the multiple addition compared to that in the single addition of Ni or Co.


Author(s):  
Krzysztof Kwieciński ◽  
Piotr Śliwiński

Electron beam brazing is a joining technology combining the advantages of a precisely controlled heat source and those of vacuum brazing process. The oxide layer decomposes in high-temperature vacuum conditions, which improves the wetting process and, consequently, leads to the obtainment of more favourable properties of the brazed joint. In comparison with brazing in vacuum furnaces, the electron beam brazing process enables the precise heating of selected areas without the necessity of heating the entire element, which, in turn, results in smaller structural changes in the brazed material and the lower consumption of energy. During tests discussed in this article, sheets made of stainless steel AISI 304 were brazed using various copper and silver filler metals. Brazed joints were subjected to microstructural tests and shear strength tests. The results revealed the high efficiency of the electron beam brazing of corrosion-resistant steel sheets using filler metals.


2005 ◽  
Vol 297-300 ◽  
pp. 2767-2771
Author(s):  
Ikuo Shohji ◽  
Satoshi Takayama ◽  
Takanori Nakazawa ◽  
Ken Matsumoto ◽  
Masanori Hikita

In the brazed joint of stainless steel with BNi-2 filler, brittle Cr-B compounds form in the vicinity of the centerline of the brazed joint. These compounds cause a decrease in joint strength. In this study, BNi-2 filler supplemented with Cr powder has been used in brazing stainless steel in orde r to disperse brittle Cr-B compounds uniformly in the brazed joint and improve joint strength. The mechanical properties and microstructures of the brazed joints were investigated. Moreover, a comp arison of the brazed joint with that using the BNi-2 filler was conducted.


2012 ◽  
Vol 499 ◽  
pp. 143-146
Author(s):  
Bin Wang ◽  
Tian Yu Zhu ◽  
Fang Fei Dong ◽  
Yan Qing Shen

The custom-designed amorphous brazing filler metals in foil form has been developed for application in brazing stainless steel 0Cr18Ni9. The new alloys contains 10.5wt% chromium, 5.4wt% silicon, 1.5wt% boron, 3wt% cobalt and nickel as the balance. The melting range is within 971°C1070°C. The alloy exhibits good melting characteristics and wetting behavior. With a 25μm thick foil, the joint is free of brittle central eutectic phases inside the joint via diffusion of the alloying elements into adjoining base metal and results on a high mechanical joint strength.


2018 ◽  
Vol 24 (1) ◽  
pp. 88
Author(s):  
Satoshi Sunada ◽  
Masahiko Hataheyama ◽  
Haruna Motoya ◽  
Norio Nunomura

<p class="AMSmaintext"><span lang="EN-GB">The corrosion resistance was studied electrochemically for an iron-based brazing filler metal F300 and a Ni-based brazing filler metal Ni613. Both austenitic stainless steel SUS316 and ferritic stainless steel SUS444 were used as base metals for these brazing filling metals. F300 showed a higher corrosion rate than those of Ni613 and both base metals and was less corrosion-resistive. While Ni613 showed a stronger depression effect of an anodic reaction than those of base metals, F300 showed little depression effect of the reaction. As an Fe-Ni phase dissolved preferentially in F300 and a finite laminated corrosive morphology was observed, the corrosion progression along a depth direction was suggested. These corrosion behaviors depend on the difference of chemical composition of these brazing filler metals.</span></p>


2020 ◽  
Vol 67 (3) ◽  
pp. 269-279
Author(s):  
Xiaohua Li ◽  
Yi Shao ◽  
Weixing Miao ◽  
Yongchang Liu ◽  
Zhiming Gao ◽  
...  

Purpose The purpose of this paper is to focus on the galvanic corrosion behaviors of the low-carbon ferritic stainless steel electrical resistance welding (ERW) joint in the simulated seawater. Design/methodology/approach The electrochemical methods such as electrochemical noise, galvanic current and TOEFL polarization curve tests were used to study the galvanic corrosion behaviors of ERW joints of low-carbon ferritic stainless steel in simulated seawater. On this basis, a reliable accelerated corrosion method was developed. Findings The corrosion type of the base metal and joint is the typical local corrosion. The order of corrosion resistance from strong to weak is: weld zone > base metal > low-temperature heat-affected zone (HAZ) > high-temperature HAZ. The results of constant current-constant potential accelerated corrosion test show that after constant current-constant potential accelerated corrosion, the joints present a typical groove corrosion pattern. The groove initiating area is located in the HAZ, and the corrosion degree in the weld zone is relatively light, which is consistent with the electrochemical test results. Originality/value This paper has clarified the galvanic corrosion behaviors of low-carbon ferritic stainless steel ERW joints. Moreover, a reliable accelerated corrosion method for the low-carbon ferritic stainless steel ERW joint has been developed.


Sign in / Sign up

Export Citation Format

Share Document